Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
=mn(m-n)(m+n)
Nếu 1 trg 2 số chia hết cho 3=> đpcm
Nếu cả 2 số cùng dư =>m-n chia hết cho 3 (đpcm)
Nếu cả 2 số khác dư (khác dư 0)=> m+n chia hết cho 3(đpcm)
Vậy mn(m^2-n^2) chia hết cho 3
b) Có 2005^2006 lẻ; 2006^2005 chẵn
Nếu n lẻ=> n+2005^2006 chẵn
Nếu n chẵn => n+2006^2005 chẵn
=> đều chia hết cho 2
=> đpcm.
b: \(2005^{2006}\) là số lẻ
và \(2007^{2006}\) là số lẻ
nên \(2005^{2006}+2007^{2006}⋮2\)
a: Vì \(2061m⋮9\)
và \(5013n⋮9\)
nên \(2061m+5013n⋮9\)
\(M=1+5+5^2+...+5^{2005}\)
\(\Rightarrow5M=5+5^2+5^3+...+5+5^{2006}\)
\(\Rightarrow5M-M=\left(5+5^2+...+5^{2006}\right)-\left(1+5+...+5^{2005}\right)\)
\(\Rightarrow5M-M=4M=5^{2006}-1\Rightarrow M=\frac{5^{2006}-1}{4}\)
\(\frac{N}{4}=\frac{5^{2006}}{4}>\frac{5^{2006}-1}{4}=M\Rightarrow M< \frac{N}{4}\)
(n+2005^2006)(n+2006^2005)
Nhận thấy các số có tận cùng = 5 thì nhân cho chính nó cũng có tận cùng = 5 => 20052006 có tận cùng = 5
Các số có tận cùng bằng 6 thì nhân cho chính nó bao nhiên lần cũng có tận cùng bằng 6 => 20062005có tận cùng =6.
ta có n có 2 trường hợp:
TH1: n là số lẻ
Nếu n là lẻ thì n+20052006 là chẵn
n+20062005 là lẻ
mà chẵn x lẻ= chẵn
TH1: (n+20052006)(n+20062005) chia hết cho 2
TH2: n= chẵn
Nếu là chẵn thì n+20052006 là lẻ
n+20062005 là chẵn
mà chẵn x lẻ cũng = chẵn
TH2: (n+20052006)x(n+20062005) chia hết cho 2.
Ta thấy trong mọi trường hợp (n+2005^2006)(n+2006^2005) đều chia hết cho 2 ĐPCM
Bài 1:
abc chia hết cho 27
⇒100a+10b +c chia hết cho 27
⇒10.(100a+10b+c) chia hết cho 27
⇒1000a+100b+10c chia hết cho 27
Mà 999a chia hết cho 27
Vậy 100b+10c+a =bca chia hết cho 27
(Chúc bạn học tốt)
cảm ơn bạn nha!