Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho tớ sửa đề làm cho nó dễ nhé == chứ x2^2 mà x1 thôi thì tớ ko có bt lm
Ta có : \(x^2+\left(-m+2\right)x-6=0\left(a=1;b=-m+2;c=-6\right)\)
Cái chỗ này là mk đổi dấu cho thuận một tí ko ko xét b đc )): lại 1 bước đi vạn dặm đau thì toang =))
\(\Delta=\left(-m+2\right)^2-4\left(-6\right)=m^2+4+24=m^2+28\) Vậy : Pt luôn có 2 nghiệm \(\forall x\)
Áp dụng hệ thức Vi et ta có : \(x_1+x_2=m-2;x_1x_2=-6\)
Theo bài ra ta có : \(x_2^2-x_1x_2+\left(m-2\right)x_1^2=16\)
\(\Leftrightarrow\left(x_1^2x_2^2\right)-x_1x_2+\left(m-2\right)=16\)
\(\Leftrightarrow\left(x_1x_2\right)^2-x_1x_2+m-2=16\)
\(\Leftrightarrow\left(-6\right)^2+6+m-2=16\)
\(\Leftrightarrow36+6+m-2=16\Leftrightarrow40+m-16=0\Leftrightarrow m=-24\)
\(\Delta=m^2+8m+16-16m=m^2-8m+16=\left(m-4\right)^2\ge0.\)
Vậy pt luôn có 2 nghiệm phân biệt.
Theo vi ét : \(\hept{\begin{cases}x_1+x_2=m+4\\x_1.x_2=4m\end{cases}}\)
\(x_1^2+\left(m+4\right)x_2=16\)
\(\Leftrightarrow x_1^2+\left(x_1+x_2\right)x_2=16\Leftrightarrow x_1^2+x_2^2+x_1x_2=16\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-x_1x_2=16\)
\(\Leftrightarrow\left(m+4\right)^2-4m=16\Leftrightarrow m^2+8m+16-4m=16\Leftrightarrow m^2+4m=0\)
\(\Leftrightarrow m\left(m+4\right)=0\Leftrightarrow\orbr{\begin{cases}m=0\\m=-4\end{cases}}\)
Để pt có hai nghiệm thì \(\Delta'\ge0\Rightarrow m^2-\left(m^2-m+1\right)\ge0\Rightarrow m-1\ge0\Rightarrow m\ge1.\)
Khi đó theo hệ thức Viet: \(\hept{\begin{cases}x_1+x_2=2m\\x_1.x_2=m^2-m+1\end{cases}}\)
Vậy thì \(x_1^2+2mx_2=x_1^2+\left(x_1+x_2\right)x_2=9\)
\(\Rightarrow x_1^2+x_1.x_2+x_2^2=9\Rightarrow\left(x_1+x_2\right)^2-x_1x_2=9\)
\(\Rightarrow\left(2m\right)^2-m^2+m-1=9\Rightarrow3m^2+m-10=0\)
\(\Rightarrow\orbr{\begin{cases}m=-2\left(l\right)\\m=\frac{5}{3}\left(n\right)\end{cases}}\)
\(\Delta=25-4\left(m-4\right)=41-4m\)
a/ Để pt có 2 nghiệm trái dấu
\(\Leftrightarrow ac< 0\Rightarrow m-4< 0\Rightarrow m< 4\)
b/ Để pt có 2 nghiệm dương pb
\(\Leftrightarrow\left\{{}\begin{matrix}\Delta>0\\x_1+x_2>0\\x_1x_2>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}41-4m>0\\5>0\\m-4>0\end{matrix}\right.\) \(\Rightarrow4< m< \frac{41}{4}\)
c/ Do \(x_1;x_2\) là nghiệm của pt nên:
\(\left\{{}\begin{matrix}x_1^2-5x_1+m-4=0\\x_2^2-5x_2+m-4=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x_1^2-4x_1+m-2=x_1+2\\x_2^2-4x_2+m-2=x_2+2\end{matrix}\right.\)
Thay vào bài toán:
\(x_1\left(x_1+2\right)+x_2\left(x_2+2\right)=23\)
\(\Leftrightarrow x_1^2+x_2^2+2\left(x_1+x_2\right)=23\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2+2\left(x_1+x_2\right)=23\)
\(\Leftrightarrow25-2\left(m-4\right)-10=23\Rightarrow m=4\)
Viết lại đề : \(x^2-2mx+m^2-1=0\left(a=1;b=-2m;c=m^2-1\right)\)( 1 )
a, Thay m = 1 vào pt (1) ta đc
\(x^2-2.1x+1^2-1=0\Leftrightarrow x^2-2x=0\)
\(\Leftrightarrow x\left(x-2\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}\)
b, Để phương trình có 2 nghiệm phân biệt thì \(\Delta>0\)
Tương ứng vs : \(\left(2m\right)^2-4\left(m^2-1\right)=4m^2-4m^2+4=4>0\)(EZ>33)
c, Áp dụng hệ thức Vi et ta có : \(x_1+x_2=2m;x_1x_2=m^2-1\)
Theo bài ra ta có : \(x_1+x_2=12\)Thay vào ta đc
\(\Leftrightarrow2m=12\Leftrightarrow m=6\)
a) \(\Delta'=1^2-m^2+3m=-\left(m^2-3m-1\right)\)
PT có 2 nghiệm PB \(\Leftrightarrow-\left(m^2-3m-1\right)>0\)
\(m^2-3m-1< 0\Leftrightarrow\left(m-\dfrac{3}{2}\right)^2>\dfrac{15}{4}\)
\(m-\dfrac{3}{2}>\dfrac{\sqrt{15}}{2}\Rightarrow m>\dfrac{\sqrt{15}+3}{2}\)
b) Vi-ét
\(\left\{{}\begin{matrix}x_1+x_2=2\\x_1x_2=m^2-3m\end{matrix}\right.\)
\(x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2=4-2m^2+6m\)
\(\Rightarrow-2m^2+6m+4=8\)
Tính m ra
c) \(x^2_1+x^2_2=-2m^2+6m+4\)
\(=-2\left(m^2-3m-2\right)\)
\(=-2\left(m-\dfrac{3}{2}\right)^2-\dfrac{17}{4}\)
Lập luận để tìm ra GTNN