K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 1 2017

Đặt t = sinx – cosx = √2.Sin(x – π/4)
Vì phương trình có nghiệm thuộc (pi/4;3pi/4) nên x – π/4 thuộc (0; π/2)
→ Sin(x -π/4) € (0; 1) → √2.Sin(x – π/4) € (0 ; √2 )
→ t € (0 ; √2 )
Lại có t = sinx – cosx nên sin2x = 2sinxcosx = 1 – t^2
PT đã cho trở thành
1 – t^2 + 2t = m <*>
Bài toán quy về tìm m để PT <*> có nghiệm t € (0 ; √2 )
Xét hàm số y = - t^2 + 2t + 1 trên miền (0 ; √2 )
Bạn vẽ bảng biến thiên ra
Sau đó nhìn vào bbt ta thấy để thỏa mãn thì :
m ≤ 2
và ↔ m € (1 ; 2]
m > 1
Vậy với m € (1 ; 2] thì thỏa mãn bài ra.

30 tháng 5 2021

C1: \(a.sinx+b.cosx=c\) 

Pt vô nghiệm \(\Leftrightarrow a^2+b^2< c^2\) 

Bạn áp dụng công thức trên sẽ tìm ra m

C2: (Bạn vẽ đường tròn lượng giác sẽ tìm được)

Hàm số \(y=sinx\) đồng biến trên khoảng \(\left(-\dfrac{\pi}{2}+k2\pi;\dfrac{\pi}{2}+k2\pi\right)\) ( góc phần tư thứ IV và I)

Hàm nghịch biến trên khoảng \(\left(\dfrac{\pi}{2}+k2\pi;\dfrac{3\pi}{2}+k2\pi\right)\)( góc phần tư thứ II và III)

Ý A, khoảng nằm trong góc phần tư thứ III và thứ IV => Hàm nghịch biến sau đó đồng biến

Ý B, khoảng nằm trong góc phần tư thứ I và thứ II => hàm đồng biến sau đó nghịch biến

Ý C, khoảng nằm trong góc phần tư thứ IV; I ; II => hàm đồng biền sau đó nghịch biến

Ý D, khoảng nằm trong phần tư thứ IV ; I=> hàm đồng biến

Đ/A: Ý D

(Toi nghĩ thế)

 

31 tháng 5 2021

thank u

2 tháng 1 2017

bài này mình tính ko ra

2 tháng 1 2017

m` tính cái mồ có mà trên mạng ko có để cop

NV
1 tháng 5 2020

\(M=sin^2x+cos^2x+2sinx.cosx+cos^2x-sin^2x\)

\(=\left(sinx+cosx\right)^2+\left(cosx-sinx\right)\left(cosx+sinx\right)\)

\(=\left(sinx+cosx\right)\left(sinx+cosx+cosx-sinx\right)\)

\(=2cosx\left(sinx+cosx\right)\)

\(=2\sqrt{2}cosx.cos\left(x-\frac{\pi}{4}\right)\)

1 tháng 5 2020

Cảm ơn bạn nhá!!!

2*sin x=2m+3

=>sin x=m+3/2

\(x\in\left[0;pi\right]\)

=>sin x thuộc [0;1]

=>0<=m+3/2<=1

=>-3/2<=m<=-1/2

25 tháng 11 2023

Xét phương trình hoành độ giao điểm\(x^2\)+4x-m=0 <=> x^2+4x=m, đây là kết hợp của 2 hàm số (P):y=\(x^2\)+4x và (d):y=m.
Khi vẽ đồ thị ta thấy parabol đồng biến trên khoảng (-2;+∞)=> Điểm giao giữa parabol và đồ thị y=m là điểm duy nhất thỏa mãn phương trình có duy nhất 1 nghiệm thuộc khoảng (-3;1).Vậy để phương trình có 1 nghiệm duy nhất <=> delta=0 <=>16+4m=0<=>m=-4.

mình trình bày hơi dài mong bạn thông cảm loading...  

Trường hợp 1: m=10

Phương trình sẽ là -40x+6=0

hay x=3/20

=>m=10 sẽ thỏa mãn trường hợp a

Trường hợp 2: m<>10

\(\Delta=\left(-4m\right)^2-4\left(m-10\right)\left(m-4\right)\)

\(=16m^2-4\left(m^2-14m+40\right)\)

\(=16m^2-4m^2+56m-160\)

\(=12m^2+56m-160\)

\(=4\left(3m^2+14m-40\right)\)

\(=4\left(3m^2-6m+20m-40\right)\)

\(=4\left(m-2\right)\left(3m+20\right)\)

a: Để phương trình có nghiệm thì (m-2)(3m+20)>=0

=>m>=2 hoặc m<=-20/3

b: Để phương trình có hai nghiệm phân biệt đều dương thì 

\(\left\{{}\begin{matrix}\left(m-2\right)\left(3m+20\right)>0\\\dfrac{4m}{m-10}>0\\\dfrac{m-4}{m-10}>0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\left(m-2\right)\left(3m+20\right)>0\\m\in\left(-\infty;0\right)\cup\left(10;+\infty\right)\\m\in\left(-\infty;4\right)\cup\left(10;+\infty\right)\end{matrix}\right.\)

\(\Leftrightarrow m\in\left(-\infty;-\dfrac{20}{3}\right)\cup\left(10;+\infty\right)\)

NV
20 tháng 4 2019

\(\frac{1-cosx+cos2x}{sin2x-sinx}=\frac{1-cosx+2cos^2x-1}{2sinx.cosx-sinx}=\frac{cosx\left(2cosx-1\right)}{sinx\left(2cosx-1\right)}=\frac{cosx}{sinx}=cotx\)

\(A=sin\left(\frac{\pi}{4}+x\right)-sin\left(\frac{\pi}{2}-\frac{\pi}{4}+x\right)=sin\left(\frac{\pi}{4}+x\right)-sin\left(\frac{\pi}{4}+x\right)=0\)