K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 1 2016

bài 1 . d là UCLN(3n+1;2n+1)=>3n+1 :d 2n+1:d

=> 3n+1 - 2n+1: d => 6n+3-6n+2:d=>1:d=>d=1

vậy:....

2.A=14+2^3.(14)+.....+2^57.(14) :7

A=30+2^4(2+2^2+2^3+2^4)+...+2^56(2+2^2+2^3+2^4)=30.(1+2^4+..+1^56) : 15

câu 1:

gọi UWCLN(2n + 1;3n+1)=d

=>2n+1 : d           =>3(2n + 1) : d

    3n + 1 : d             2(3n + 1) : d

=> 1 : d => d = 1

                     (ĐPCM)

câu 2:

A: 7 ; A = 7.B :7

          A = 15 . C :15

11 tháng 3 2018

BN sử dụng đồng dư nha

12 tháng 11 2017

mk xin làm câu b nhé mà A = chứ ko phải A : đâu nhé bạn.(^:mủ)

ta có: A = 5+5^2+5^3+...+5^100

vì 5 chia hết cho 5

    5^2 chia hết cho 5

    5^3 chia hết cho 5

    .......

    5^100 chia hết cho 5

    nên A = 5+5^2+5^3+...+5^100 cũng chia hết cho 5(vì các số hạng tronh tổng chia hết cho 5)

12 tháng 11 2017

a, gọi UCLN(2n+1,3n+1) là d

Ta có 2n+1 chia hết cho d=> 6n+3 chia hết cho d

3n+1 chia hết cho d=> 6n+2 chia hết cho     d 

=> (6n+3)-(6n+2)=1 chia hết cho d 

=> d là ước của 1

Vậy 2n+1 và 3n+1 là 2 số nt cùng nhau

20 tháng 12 2018

Bài 1:

Ta có: \(2+2^2+2^3+...+2^{2010}=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{2009}\left(1+2\right).\)

\(=3\left(2+2^3+...+2^{2009}\right)⋮3\)

\(2+2^2+2^3+...+2^{2010}=2\left(1+2+4\right)+2^4\left(1+2+4\right)+...+2^{2008}\left(1+2+4\right)\)

\(=7\left(2+2^4+...+2^{2008}\right)⋮7\)

bài 2:

Gọi d là ƯCLN của 2n+3 và 3n+4 \(\left(d\inℕ^∗\right)\)

\(\Rightarrow\hept{\begin{cases}2n+3⋮d\\3n+4⋮d\end{cases}\Rightarrow\hept{\begin{cases}6n+9⋮d\\6n+8⋮d\end{cases}\Rightarrow}1⋮d\Rightarrow d=1}\)

\(\RightarrowƯCLN\left(2n+3;3n+4\right)=1\)

\(\Rightarrow\)2n+3 và 3n+4 là 2 số nguyên tố cùng nhau

12 tháng 11 2017

a) 2n + 1 và 3n + 1 nguyên tố cùng nhau

Gọi ƯCLN (2n+1, 3n+1) là d (d thuộc N*)

\(\Rightarrow2n+1⋮d\)

     \(3n+1⋮d\)

\(\Rightarrow6n+3⋮d\)

      \(6n+2⋮d\)

\(\Rightarrow\left(6n+3\right)-\left(6n+2\right)⋮d\)

\(\Rightarrow1⋮d\)

Mà d thuộc N* => d =1 (đpcm)

Vậy, 2n +1 và 3n +1 nguyên tố cùng nhau

12 tháng 11 2017

a ) Gọi ƯCLN ( 2n + 1 , 3n + 1 ) là d ( d thuộc N* )

=> 2n + 1 chia hết cho d , 3n + 1 chia hết cho d

=> 3.( 2n + 1 ) chia hết cho d , 2.( 3n + 1 ) chia hết cho d

=> 6n + 3 chia hết cho d , 6n + 2 chia hết cho d

=> ( 6n + 3 ) - ( 6n + 2 ) chia hết cho d

=> 6n + 3 - 6n - 2 chia hết cho d

=> 1 chia hết cho d => d thuộc Ư ( 1 ) = { 1 }

MÀ ước của hai số là 1 => 2n + 1 và 3n + 1 là hai số nguyên tố cùng nhau

Vậy 2n + 1 và 3n + 1 là hai số nguyên tố cùng nhau ( dpcm )

9 tháng 3 2019

a, Ta có : 5n+2 + 26.5n + 82n+1 = 25.5n + 26.5n + 8.64n = 51.5n + 8.64n

Vì \(64\equiv5\) ( mod 59 ) nên \(64^n\equiv5^n\) ( mod 59 )

Do đó : \(5^{n+2}+26.5^n+8^{2n+1}\equiv51.5^n+8.5^n\) ( mod 59 )

\(\Leftrightarrow5^{n+2}+26.5^n+8^{2n+1}\equiv59.5^n\) ( mod 59 )

\(\Leftrightarrow5^{n+2}+26.5^n+8^{2n+1}\equiv0\) ( mod 59 ) hay \(\left(5^{n+2}+26.5^n+8^{2n+1}\right)⋮59̸\)

b, Ta có : \(168=2^3.3.7\)

- Vì \(3^{2n}+7=9^n+7\equiv1+7\)( mod 8 ) hay \(3^{2n}+7\equiv0\) ( mod 8 )

\(\Rightarrow\left(3^{2n}+7\right)⋮8.\)Mặt khác : \(4^{2n}=16^n⋮8\)nên \(\left(4^{2n}-3^{2n}-7\right)⋮8\)     (1)

- Vì \(4^{2n}\equiv1\)( mod 3 ) ; \(7\equiv1\)( mod 3 ) \(\Rightarrow4^{2n}-7\equiv0\) ( mod 3 ) 

Do đó : \(\left(4^{2n}-3^{2n}-7\right)⋮3\)   (2)

- Vì \(4^{2n}=16^n\equiv2^n\) ( mod 7 ) ; \(3^{2n}=9^n\equiv2^n\) ( mod 7 )

nên \(4^{2n}-3^{2n}\equiv0\) ( mod 7 ). Do đó : \(\left(4^{2n}-3^{2n}-7\right)⋮7\) (3)

Từ (1);(2);(3) và ( 8,3,7 ) = 1 nên \(\left(4^{2n}-3^{2n}-7\right)⋮8.3.7\)

hay \(\left(4^{2n}-3^{2n}-7\right)⋮168\) \(\left(n\ge1\right)\)

13 tháng 4 2020

n lớn hơn 1 nhé

6 tháng 8 2017

Đăng ít thôi.

6 tháng 8 2017

==" nghĩ mấy cía này của lớp 78 chứ sao lại 6

gọi d là ước chung lớn nhất của A và B

  A chia hết cho d

  B chia hết cho d

=>A-B chia hết cho d

=>(n^4+3n^2+1) -(n^3+2n)-chia hết d

=>(n^4+3n^2+1) -n.(n^3+2n)chia hết d

=>((n^4+3n^2+1) - (n^4+3n^2)chia hết d

=>n^4+3n^2+1-n^4-3n^2 chia hết d

=>1chia hết d

=>d thuộc Ư(1)={1}

vậy A và B là 2 số nguyên tố cùng nhau

30 tháng 11 2019

Câu hỏi của shushi kaka - Toán lớp 6 - Học toán với OnlineMath