\(n\) lẻ và \((n,3)=1\). chứng minh
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 8 2017

1/ \(A=n^4-1=\left(n-1\right)\left(n+1\right)\left(n^2+1\right)\)

\(\left(n,3\right)=1\) nên \(n⋮̸3\) nên n chia 3 dư 1 hoặc dư 2

- Nếu n chia 3 dư 1 thì \(\left(n-1\right)⋮3\Rightarrow A⋮3\)

- Nếu n chia 3 dư 2 thì \(\left(n+1\right)⋮3\Rightarrow A⋮3\)

Như vậy \(A⋮3\)

Lại có n lẻ nên n-1 và n+1 là 2 số chẵn liên tiếp \(\Rightarrow\left[\left(n-1\right)\left(n+1\right)\right]⋮8\) (1)

Mặt khác n lẻ \(\Rightarrow\left(n^2+1\right)⋮2\) (2)

Từ (1) và (2) suy ra \(\Rightarrow\left[\left(n-1\right)\left(n+1\right)\left(n^2+1\right)\right]⋮16\)

Hay \(A⋮16\)

Ta có \(A⋮3;A⋮16\), mà (3;16) = 1 nên \(A⋮48\)

2/ \(B=n^4-1=\left(n-1\right)\left(n+1\right)\left(n^2+1\right)\)

- Chứng minh \(B⋮16\) tương tự như ở câu 1

- Ta sẽ đi chứng minh \(B⋮5\)

+ Nếu n chia 5 dư 1 thì \(\left(n-1\right)⋮5\Rightarrow B⋮5\)

+ Nếu n chia 5 dư 4 thì \(\left(n+1\right)⋮5\Rightarrow B⋮5\)

+ Nếu n chia 5 dư 2 hoặc dư 3 thì \(\left(n^2+1\right)⋮5\Rightarrow B⋮5\)

Do đó \(B⋮5\)

Kết hợp với \(B⋮16\) ở trên suy ra \(B⋮80\)

10 tháng 8 2017

4. \(D=n^8-n^4=n^4\left(n^4-1\right)=n^3\left(n-1\right).n.\left(n+1\right)\left(n^2+1\right)\)

- Dễ thấy n-1, n, n+1 là 3 số nguyên liên tiếp nên \(D⋮3\)

- Chứng minh \(D⋮5\)

+ Nếu \(n⋮5\) thì \(D⋮5\)

+ Nếu n chia 5 dư 1;2;3;4 thì ... (tương tự câu 2)

- Chứng minh \(D⋮16\)

+ Nếu n chẵn thì \(n^4⋮16\Rightarrow D⋮16\)

+ Nếu n lẻ, cmtt câu 1

Ta có (16;3;5) = 1 nên \(D⋮\left(16.3.5\right)=240\)

3. \(C=n^6+n^4-2n^2=n^2\left(n^4+n^2-2\right)\)

\(=n^2\left(n^2-1\right)\left(n^2+2\right)=n^2\left(n-1\right)\left(n+1\right)\left(n^2+2\right)\)

- Chứng minh \(C⋮8\)

+ Nếu n chẵn thì \(n^2⋮4\)\(\left(n^2+2\right)⋮2\) \(\Rightarrow\left[n^2\left(n+2\right)\right]⋮8\) nên \(C⋮8\)

+ Nếu n lẻ thì n-1 và n+1 là 2 số chẵn liên tiếp \(\Rightarrow\left[\left(n-1\right)\left(n+1\right)\right]⋮8\Rightarrow C⋮8\)

- Chứng minh \(C⋮9\)

+ Dễ thấy \(\left[n\left(n-1\right)\left(n+1\right)\right]⋮3\) (1)

+ Ta sẽ chứng minh \(\left[n\left(n^2+2\right)\right]⋮3\)

Nếu \(n⋮3\) thì \(\left[n\left(n^2+2\right)\right]⋮3\)

Nếu n chia 3 dư 1 hoặc 2 thì \(\left[n\left(n^2+2\right)\right]⋮3\)

Vậy \(\left[n\left(n^2+2\right)\right]⋮3,\forall n\in Z\) (2)

Từ (1) và (2) suy ra \(\left[n\left(n-1\right)\left(n+1\right)\right].\left[n\left(n^2+2\right)\right]⋮\left(3.3\right)=9\)

Hay \(C⋮9\)

Ta có \(C⋮8\)\(C⋮9\), mà (8;9) = 1 nên \(C⋮72\)

11 tháng 6 2018

Bạn làm bài kiểm tra hả sao nhiều bài tek. Mk làm mất khá nhiều tg luôn đó Ôn tập cuối năm phần số họcÔn tập cuối năm phần số họcÔn tập cuối năm phần số họcÔn tập cuối năm phần số học

11 tháng 6 2018

Có một số câu thì mình không làm được. Mong bạn thông cảm!!!

Ôn tập cuối năm phần số họcÔn tập cuối năm phần số học

14 tháng 8 2019

b) \(4^2.3-4^5+27=3.4^n+27-4^5\)

\(4^2.3=3.4^n\)

=> n=2

14 tháng 8 2019

a) \(a^{n-1}-3a^3=a^4-3a^3\)

\(a^{n-1}=a^4\)

=> n-1=4

=> n=5

31 tháng 5 2019

c) Cho \(P(x)=100x^{100}+99x^{99}+98x^{98}+...+2x^2+x\).Tính P(-1)

3 tháng 9 2016

\(n^2\left(n+1\right)+2n\left(n+1\right)=n\left(n+1\right)\left(n+2\right)\)

Vì n(n+1)(n+2) là tích của 3 số tự nhiên liên tiếp nên chia hết cho cả 2 và 3 . Mà (2,3) = 1 nên n(n+1)(n+2) chia hết cho 6.

Từ đó có đpcm

3 tháng 9 2016

\(n^2\left(n+1\right)+2n\left(n+1\right)=n\left(n+1\right)\left(n+2\right)⋮6\)

=>đpcm

AH
Akai Haruma
Giáo viên
30 tháng 9 2020

e)

$x^3+6x^2+12x+8=x^3+3.2.x^2+3.2^2.x+2^3=(x+2)^3$
f)

$a^3-2a^2-ab^2+2b^2=(a^3-ab^2)-(2a^2-2b^2)$

$=a(a^2-b^2)-2(a^2-b^2)=(a^2-b^2)(a-2)=(a-b)(a+b)(a-2)$

g)

$2a^2x-2a^2-2abx+4ab-2b^2=(2a^2x-2abx)-(2a^2-4ab+2b^2)$

$=2ax(a-b)-2(a-b)^2=2(a-b)(ax-a+b)$

h)

\(x^2-2xy+y^2-25=(x-y)^2-25=(x-y)^2-5^2=(x-y+5)(x-y-5)\)

AH
Akai Haruma
Giáo viên
30 tháng 9 2020

a)

$4x^2-40x^4+100x^3=4x^2(1-10x^2+25x)$

b)

\(3xy(x-5)-7x+35=3xy(x-5)-7(x-5)\)

\(=(x-5)(3xy-7)\)

c)

\(a^2-am-b^2-bm=(a^2-b^2)-(am+bm)=(a-b)(a+b)-m(a+b)\)

\(=(a+b)(a-b-m)\)

d)

\(x^3-4x-x^2y+4y=(x^3-x^2y)-(4x-4y)\)

\(=x^2(x-y)-4(x-y)=(x^2-4)(x-y)=(x-2)(x+2)(x-y)\)

NV
27 tháng 2 2019

\(A\) chia hết cho B khi \(\left\{{}\begin{matrix}2n\ge n+2\\3\ge n+1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}n\ge2\\n\le2\end{matrix}\right.\) \(\Rightarrow n=2\)