Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(limu_n=lim\dfrac{1}{n}=0\); \(limv_n=lim\left(-\dfrac{1}{n}\right)=0\).
\(limf\left(u_n\right)=lim\left(\sqrt{\dfrac{1}{n}}+1\right)=1\).
\(limf\left(v_n\right)=lim\left(2.\dfrac{-1}{n}\right)=lim\dfrac{-2}{n}=0\).
Hai dãy số \(\left(u_n\right)\) và \(\left(v_n\right)\) đều có giới hạn 0 khi n tiến ra dương vô cùng nhưng \(limf\left(u_n\right)\ne limf\left(v_n\right)\) nên f không có giới hạn tại \(x=0\).
ta có (f(x)-20)/(x-2)=10
===>f(x)=10x
thay f(x)=10x vào A và thay
x=2+0,000000001 ta được giới hạn của A= -331259694,9
cái chỗ F(x) =10x đó ,đâu có là sao vậy ạ , tại có thể 10 đó là g(2)=10
Quan sát đồ thị ta thấy x → -∞ thì f(x) → 0; khi x → 3- thì f(x) → -∞;
khi x → -3+ thì f(x) x → +∞.
b) f(x) = = = 0.
f(x) = = = -∞ vì = > 0 và = -∞.
f(x) = = . = +∞
vì = = > 0 và = +∞.
1/ L'Hospital:
\(=\lim\limits_{x\rightarrow6}f'\left(x\right)=f'\left(6\right)=2\)
3/ \(=\lim\limits_{x\rightarrow2}\dfrac{\dfrac{3}{2\sqrt{3x+3}}}{1}=\dfrac{1}{2}\Rightarrow2a-b=0\)
4/ \(=\lim\limits_{x\rightarrow1}\dfrac{2f\left(x\right).f'\left(x\right)-f'\left(x\right)}{\dfrac{1}{2\sqrt{x}}}=\dfrac{2.6.5-5}{\dfrac{1}{2}}=110\)
2/ \(x_0=-3\Rightarrow y_0=\dfrac{-3-1}{-3+2}=\dfrac{-4}{-1}=4\)
\(y'=\dfrac{\left(x-1\right)'\left(x+2\right)-\left(x-1\right)\left(x+2\right)'}{\left(x+2\right)^2}=\dfrac{x+2-x+1}{\left(x+2\right)^2}=\dfrac{3}{\left(x+2\right)^2}\)
\(\Rightarrow y'\left(-3\right)=3\)
\(\Rightarrow pttt:y=3\left(x+3\right)+4=3x+13\)
\(x=0\Rightarrow y=13;y=0\Rightarrow x=-\dfrac{13}{3}\)
\(\Rightarrow S=\dfrac{1}{2}.\left|x\right|\left|y\right|=\dfrac{1}{2}.\dfrac{13}{3}.13=\dfrac{169}{6}\left(dvdt\right)\)
P/s: Câu 5,6 bỏ qua nhé, toi ngu hình học :b
cảm ơn bạn nhé =))