K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Câu 2: 

a: Xét ΔABC vuông tại A và ΔMDC vuông tại M có

góc C chung

Do đo:ΔABC đồng dạng với ΔMDC

b: Xét ΔBMI vuông tại M và ΔBAC vuông tại A có

góc ABC chung

Do đo: ΔBMI\(\sim\)ΔBAC
Suy ra: BM/BA=BI/BC

hay \(BM\cdot BC=BA\cdot BI\)

28 tháng 5 2018

E A C D F O B 1 1 1 1

a) Xét tg EAB và tg BCF có

A1=C1 ( cùng bù góc BAC = góc BCA)

góc F = góc EBA ( đồng vị của AB//CF)

Do đó tg EAB ~ tg BCF (gg)

=> AE/BC = AB/CF hay AE.CF=AB.BC => AE.CF = AB2 (AB=BC)

Màu AB2 ko đổi => AE.CF ko đổi

Vậy AE.CF ko đổi

b) Xét tam giác AEC và tg CAF có

AC/CF = AE/AC (vì AE.CF =AB2 hay AE.CF=AC2)

góc EAC = góc FCA =120 độ ( vì tg ABC đều =>A1+BAC=120 độ; C1+BCA =120 độ)

Do đó tg AEC ~ tg CAF (cgc)

c) tg AEC ~ tg CAF => góc E1= góc F1

Mà A1+BAC=120 độ

=> A1+E1=120 độ ( góc BAC= góc E1=60 độ)

Do đó EOF =120 độ ( do là tổng 2 góc trong ko kề vs nó của tg EAO)

Vậy góc EOF ko đổi

15 tháng 7 2019

sai r bạn ơi, góc A1+E1 ko bang 120 bạn nhé, Góc BAC+A1=120 chưa thể suy ra nhanh như thế

5 tháng 1 2016

lam dc bai nay chua ban

 

26 tháng 8 2020

bạn ơi, làm câu c rồi thì giải đi

6 tháng 7 2021

a, Xét ▲ABC  và ▲MDC có:

∠CAB=∠DMC (=90o)

∠DCB chung

=> ▲ABC∼▲MDC (g.g)

b, Xét ▲MBI và ▲ABC có:

∠CAB=∠IMB (=90o)

∠ABC chung

=> ▲MBI∼▲ABC (g.g)

=> \(\dfrac{BI}{BC}=\dfrac{BM}{BA}\) => BI.BA=BM.BC

c, Xét ▲ADB và ▲KIB có:

∠DAB=∠CKB (=90o)

∠DBA chung

=> ▲ADB∼▲KIB (g.g)

=>\(\dfrac{BA}{KB}=\dfrac{DB}{BI}\) => BA.BI=KB.DB

Xét ▲DKC và ▲IAC có:

∠DKC=∠IAC (=90o)

∠DCK chung

=> ▲DKC∼▲IAC (g.g)

=>\(\dfrac{CK}{AC}=\dfrac{DC}{CI}\) => CK.CI=DC.AC

Ta có: BA.BI=KB.DB nên BA.BI ko thay đổi khi M thay đổi

CK.CI=DC.AC nên CK.CI ko thay đổi khi M thay đổi

nên BI.BA+CI.CK ko phụ thuộc vào vị trí của điểm M

 

 

6 tháng 7 2021

d, Xét ▲BMA và ▲BIC có:

\(\dfrac{BA}{BM}=\dfrac{BC}{BI}\) (cmc, b)

∠ACB chung

=> ▲BMA ∼▲BIC (c.g.c)

=> ∠BAM=∠BCI 

Xét ▲CAI và ▲BKI có:

∠CAI=∠BKI (=90o)

∠AIC=∠KIB (đ.đ)

=> ▲CAI ∼▲BKI (g.g)

=> \(\dfrac{IA}{IC}=\dfrac{IK}{IB}\)

Xét ▲IAK và ▲ICB có:

\(\dfrac{IA}{IC}=\dfrac{IK}{IB}\) (cmt)

∠AIK=∠CIB (đ.đ)

=> ▲IAK ∼▲ICB (g.g)

=> ∠KAB=∠BCI

mà ∠BAM=∠BCI 

nên ∠KAB=∠BAM hay AB là tia p/g của ∠MAK (đpcm)