Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
E A C D F O B 1 1 1 1
a) Xét tg EAB và tg BCF có
A1=C1 ( cùng bù góc BAC = góc BCA)
góc F = góc EBA ( đồng vị của AB//CF)
Do đó tg EAB ~ tg BCF (gg)
=> AE/BC = AB/CF hay AE.CF=AB.BC => AE.CF = AB2 (AB=BC)
Màu AB2 ko đổi => AE.CF ko đổi
Vậy AE.CF ko đổi
b) Xét tam giác AEC và tg CAF có
AC/CF = AE/AC (vì AE.CF =AB2 hay AE.CF=AC2)
góc EAC = góc FCA =120 độ ( vì tg ABC đều =>A1+BAC=120 độ; C1+BCA =120 độ)
Do đó tg AEC ~ tg CAF (cgc)
c) tg AEC ~ tg CAF => góc E1= góc F1
Mà A1+BAC=120 độ
=> A1+E1=120 độ ( góc BAC= góc E1=60 độ)
Do đó EOF =120 độ ( do là tổng 2 góc trong ko kề vs nó của tg EAO)
Vậy góc EOF ko đổi
sai r bạn ơi, góc A1+E1 ko bang 120 bạn nhé, Góc BAC+A1=120 chưa thể suy ra nhanh như thế
a, Xét ▲ABC và ▲MDC có:
∠CAB=∠DMC (=90o)
∠DCB chung
=> ▲ABC∼▲MDC (g.g)
b, Xét ▲MBI và ▲ABC có:
∠CAB=∠IMB (=90o)
∠ABC chung
=> ▲MBI∼▲ABC (g.g)
=> \(\dfrac{BI}{BC}=\dfrac{BM}{BA}\) => BI.BA=BM.BC
c, Xét ▲ADB và ▲KIB có:
∠DAB=∠CKB (=90o)
∠DBA chung
=> ▲ADB∼▲KIB (g.g)
=>\(\dfrac{BA}{KB}=\dfrac{DB}{BI}\) => BA.BI=KB.DB
Xét ▲DKC và ▲IAC có:
∠DKC=∠IAC (=90o)
∠DCK chung
=> ▲DKC∼▲IAC (g.g)
=>\(\dfrac{CK}{AC}=\dfrac{DC}{CI}\) => CK.CI=DC.AC
Ta có: BA.BI=KB.DB nên BA.BI ko thay đổi khi M thay đổi
CK.CI=DC.AC nên CK.CI ko thay đổi khi M thay đổi
nên BI.BA+CI.CK ko phụ thuộc vào vị trí của điểm M
d, Xét ▲BMA và ▲BIC có:
\(\dfrac{BA}{BM}=\dfrac{BC}{BI}\) (cmc, b)
∠ACB chung
=> ▲BMA ∼▲BIC (c.g.c)
=> ∠BAM=∠BCI
Xét ▲CAI và ▲BKI có:
∠CAI=∠BKI (=90o)
∠AIC=∠KIB (đ.đ)
=> ▲CAI ∼▲BKI (g.g)
=> \(\dfrac{IA}{IC}=\dfrac{IK}{IB}\)
Xét ▲IAK và ▲ICB có:
\(\dfrac{IA}{IC}=\dfrac{IK}{IB}\) (cmt)
∠AIK=∠CIB (đ.đ)
=> ▲IAK ∼▲ICB (g.g)
=> ∠KAB=∠BCI
mà ∠BAM=∠BCI
nên ∠KAB=∠BAM hay AB là tia p/g của ∠MAK (đpcm)
Câu 2:
a: Xét ΔABC vuông tại A và ΔMDC vuông tại M có
góc C chung
Do đo:ΔABC đồng dạng với ΔMDC
b: Xét ΔBMI vuông tại M và ΔBAC vuông tại A có
góc ABC chung
Do đo: ΔBMI\(\sim\)ΔBAC
Suy ra: BM/BA=BI/BC
hay \(BM\cdot BC=BA\cdot BI\)