K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(=10\sqrt{3}\left(cm\right)\)

29 tháng 2 2020

A B C D O AC = 8 BD = 6

Gọi \(O\) là giao điểm của \(AC\)và \(BD\).

Theo đề ta có: \(\hept{\begin{cases}AC=8cm\\BD=6cm\end{cases}}\)

Theo tính chất của hình thoi ta có: \(\hept{\begin{cases}AO=OC=4cm\\BO=OD=3cm\end{cases}}\)

Áp dụng định lí Pitago trong \(\Delta AOB\) có:

\(AB^2=AO^2+OB^2\)

\(\Rightarrow AB=\sqrt{AO^2+OB^2}=\sqrt{4^2+6^2}\)

\(\Rightarrow AB=5cm\)

\(\Rightarrow S_{ABCD}=4AB=4.5=20cm\)

Vậy ...............

5 tháng 11 2019

Áp dụng định lý Py-ta-go trong tam giác vuông AOB vuông tại O ta có:

BO = A B 2 − O A 2 = 20 2 − 16 2 = 12

SABCD = 1 2 BD. AC =  1 2 2OB. 2AO = 2BO. AO = 2.12.16 = 384 (cm2)

Đáp án cần chọn là: A

9 tháng 5 2017

Áp dụng định lý Py-ta-go trong tam giác vuông AOB vuông tại O ta có:

BO = A B 2 − O A 2 = 10 2 − 6 2 = 8

SABCD = 1 2 BD. AC = 1 2 2OB. 2AO = 2BO. AO = 2.8.6 = 96 (cm2)

Đáp án cần chọn là: B

2 tháng 11 2021

127 : 127 = bao nhieu

29 tháng 2 2020

Gọi O là giao điểm của 2 đường chéo của hình thoi

\(\Rightarrow\)O là trung điểm của AC và BD 

\(\Rightarrow OA=\frac{1}{2}AC=\frac{1}{2}.8=4\left(cm\right)\)và \(OB=\frac{1}{2}BD=\frac{1}{2}.6=3\left(cm\right)\)

Tứ giác ABCD là hình thoi \(\Rightarrow AC\perp BD\)\(\Rightarrow OA\perp OB\)\(\Rightarrow\Delta OAB\)vuông tại O

Áp dụng định lý Pytago ta có: \(OA^2+OB^2=AB^2\)

\(\Rightarrow AB^2=4^2+3^2=16+9=25\)\(\Rightarrow AB=5\left(cm\right)\)

Vì ABCD là hình thoi \(\Rightarrow AB=BC=CD=CA\)

\(\Rightarrow P_{ABCD}=4.AB=4.5=20\left(cm\right)\)

29 tháng 2 2020

 \(S_{ABCD}=\frac{1}{2}AC\cdot BD=\frac{1}{2}\cdot8\cdot16=64\left(cm^2\right)\)