Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của trần trúc quỳnh - Toán lớp 9 - Học toán với OnlineMath
Em tham khảo tại đây nhé.
a) Do AB//CD nên áp dụng hệ quả định lý Ta let ta có:
\(\frac{AO}{OC}=\frac{OB}{OD}\) hay \(\frac{DO}{DB}=\frac{OC}{AC}\)
Xét tam giác ABD có OM//AB nên \(\frac{OM}{AB}=\frac{DO}{DB}\)
Tương tự \(\frac{ON}{AB}=\frac{CO}{CA}\)
Vậy nên \(\frac{OM}{AB}=\frac{ON}{AB}\Rightarrow OM=ON\)
b) Coi AB = 1, DC = k thì \(\frac{DO}{OB}=\frac{DC}{AB}=k\Rightarrow\frac{DO}{DB}=\frac{k}{k+1}\)
\(\Rightarrow OM=ON=\frac{k}{k+1}\Rightarrow MN=\frac{2k}{k+1}\)
Ta có \(\frac{1}{AB}+\frac{1}{CD}=\frac{1}{1}+\frac{1}{k}=\frac{k+1}{k}\)
\(\frac{2}{MN}=\frac{2}{\frac{2k}{k+1}}=\frac{k+1}{k}\)
Vậy nên \(\frac{1}{AB}+\frac{1}{CD}=\frac{2}{MN}\)
c) Ta thấy ngay \(\Delta COD\sim\Delta AOB\left(g-g\right)\) theo tỉ lệ k ở câu b.
Vậy thì \(\frac{S_{COD}}{S_{AOB}}=\frac{2009^2}{2008^2}=\left(\frac{2009}{2008}\right)^2=k^2\Rightarrow k=\frac{2009}{2008}\)
Từ đó ta có \(\frac{OC}{OA}=\frac{DO}{OB}=\frac{2009}{2008}\)
Vậy thì \(\frac{S_{ADO}}{S_{AOB}}=\frac{2009}{2008}\Rightarrow S_{ADO}=\frac{2009}{2008}.2008^2=2009.2008\)
\(\frac{S_{BOC}}{S_{AOB}}=\frac{2009}{2008}\Rightarrow S_{BOC}=\frac{2009}{2008}.2008^2=2009.2008\)
Suy ra \(S_{ABCD}=S_{AOB}+S_{DOC}+S_{AOD}+S_{BOC}=2008^2+2009^2+2.2008.2009\)
\(=\left(2008+2009\right)^2=4017^2\left(cm^2\right)\)
sai đầu bài rồi nhé. Cái này là vô lý. xem lại đầu bài nhé
đề sai rồi, mk không chứng minh
xét theo hình vẽ thì có có thể bé hơn 3 đến 4 lần
A B H D C 1 2
a,kẻ \(AH\bot DC(H\in BC)\)
cm được ABHD là hình chữ nhật suy ra AB=HD=2cm
Mà DH+HC=DC
\(\Rightarrow HC=DC-DH=4-2=2\Rightarrow HC=DH=2cm\)
\(\Rightarrow \Delta DBC\) cân tại B
\(\Rightarrow \angle D_1=\angle C=45^o\Rightarrow \angle DBC=90^o\)
\(\Rightarrow\Delta DBC \) vuông cân tại B
b,Ta có \(\angle D_1+\angle D_2=90^o\Rightarrow \angle D_2=90^o-\angle D_1=90^o-45^o=45^o\)
\(\Rightarrow \angle D_1=\angle D_2 \Rightarrow\) DB là phân giác góc D
c,Ta tính được BH=DH=CH=2cm
\(\Rightarrow S_{ABCD}=\dfrac{1}{2}BH(AB+DC)=\dfrac{1}{2}.2.(2+4)=6cm^2\)