\(\frac{1}{^{AB^2}...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 7 2017

A B C H I K

a. Theo định lí Pitago ta có \(BC=\sqrt{AB^2+AC^2}=\sqrt{b^2+c^2}\)

Theo hệ thức lượng trong tam giác vuông ta có 

 \(AH.BC=AB.AC\Rightarrow AH=\frac{AB.AC}{BC}=\frac{bc}{\sqrt{b^2+c^2}}\)

\(AI.AB=AH^2\Rightarrow AI=\frac{AH^2}{AB}=\frac{b^2c^2}{\left(b^2+c^2\right)c}=\frac{b^2c}{b^2+c^2}\)

\(AK.AC=AH^2\Rightarrow AK=\frac{AH^2}{AC}=\frac{b^2c^2}{\left(b^2+c^2\right)b}=\frac{bc^2}{b^2+c^2}\)

b. Ta có \(BI=AB-AI=c-\frac{b^2c}{b^2+c^2}=\frac{c^3+cb^2-b^2c}{b^2+c^2}=\frac{c^3}{b^2+c^2}\)

\(CK=AC-AK=b-\frac{bc^2}{b^2+c^2}=\frac{b^3}{b^2+c^2}\)

Vậy \(\frac{BI}{CK}=\frac{\frac{c^3}{b^2+c^2}}{\frac{b^3}{b^2+c^2}}=\frac{c^3}{b^3}\)

23 tháng 7 2020

Đáp án:

Giải thích các bước giải:

 a. Xét tứ giác AIHK có

∠HKA=∠KAI=∠AIH=90 độ

⇒AIHK là hình chữ nhật

b. Có ∠CHK=∠CBA ( đồng vị )

mà ∠CBA=∠KAH ( do cùng phụ ∠BAH)

∠KAH=∠AKI (t/c hcn)

⇒∠CBA=∠AKI

Mặt khác : ∠ACB+∠ABC=90 độ

∠AIK+∠AKI=90 độ

⇒∠ACB=∠AIK

8 tháng 7 2017

a, áp dụng hệ thức lượng ta có CB.CH=CK^2 

                                            VÀ CA.CI=CK^2

TỪ đó suy ra đpcm cùng = quá CK ^2

b , DỄ DÀNG CM đc tứ giác IKCH là hcn suy ra IK=CH  ; KH=IC  áp dụng hệ thức lượng cuối cùng trong tam giác vg IKH  Có \(\frac{1}{KM^2}=\frac{1}{IK^2}+\frac{1}{KH^2}\)<=> \(\frac{1}{KM^2}=\frac{1}{CH^2}+\frac{1}{CI^2}\)

11 tháng 7 2017

Cảm ơn bạn lê thị bích ngọc đã giúp đỡ mình Nhưng còn ý d) bạn chưa làm. Đây là câu trả lời cho ý d) của mình nhé ^-^

d) Áp dụng hệ thức lượng vào \(\Delta ABC\) vuông tại C ta có :  \(AC^2=AK.AB\)

                                                                                          \(CB^2=BK.AB\)

\(\Rightarrow\frac{AC^2}{BC^2}=\frac{AK.AB}{BK.AB}=\frac{AK}{BK}\)

\(\Rightarrow\frac{AC^4}{BC4}=\frac{AK^2}{BK^2}\) (1)

Mặt khác , áp dụng hệ thức lượng vào \(\Delta AKC\)  vuông tại K  ta có: \(AK^2=AI.AC\) (2)

                                                   vào \(\Delta BKC\)  vuông tại K  ta có  \(KB^2=BH.BC\)  (3)

Từ (1) (2) (3) \(\Rightarrow\frac{AC^4}{BC^4}=\frac{AI.AC}{BH.BC}\Rightarrow\frac{AC^3}{CB^3}=\frac{AI}{BH}\)