K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NA
Ngoc Anh Thai
Giáo viên
22 tháng 5 2021

1. Gọi đường thẳng cần tìm là (d):  y = ax + b.

Giao điểm của (d) và Oy là A (0;2) =>  b = 2 (1).

Giao điểm của (d) và Ox là B (-2;0) => 2a  + b = 0 (2)

Từ (1) và (2) ta có a = -1, b = 2. Vậy (d): y = -x + 2.

2. \(\left\{{}\begin{matrix}mx-2x+y=3\\3x-2y=m\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2mx-4x+2y=6\\3x-2y=m\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2mx-x=m+6\\3x-2y=m\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\left(2m-1\right)=m+6\\3x-2y=m\end{matrix}\right.\)

Để hệ có nghiệm duy nhất thì pt \(x\left(2m-1\right)=m+6\) có nghiệm duy nhất. Khi đó \(2m-1\ne0\Leftrightarrow m\ne\dfrac{1}{2}.\)

3.

2x + 3y + 5 = 0 ⇔ \(y=\dfrac{-2}{3}x-\dfrac{5}{3}\)

Để hai đường thẳng trùng nhau thì \(a=\dfrac{-2}{3};b=\dfrac{-5}{3}\).

4.

Bán kính đường tròn ngoại tiếp hình vuông là \(\dfrac{\sqrt{2}}{\sqrt{2}}=1\left(cm\right)\).

Độ dài đường tròn ngoại tiếp hình vuông là: 2π (cm).

câu trả lời của thầy nhanh và gọn thật

31 tháng 5 2017

Hàm số bậc nhất

Hàm số bậc nhất

23 tháng 4 2017

a) Giả sử M là giao điểm của đồ thị của hàm số (1) và đường thẳng y = 2x -1. Vì M thuộc đường thẳng y = 2x - 1 và có hoành độ là x = 2 nên tung độ của nó là y = 2 . 2 - 1 = 3.

Như vậy ta có M(2; 3).

Vì M thuộc đồ thị của hàm số (1) nên 3 = a . 2 - 4. Do đó a = 3,5.

b) Gọi N là giao điểm của đồ thị của hàm số (1) và đường thẳng y = -3x + 2. Lập luận tương tự như trên, ta tìm được N(-1; 5) và a = -9.

23 tháng 4 2017

Bài giải:

a) Giả sử M là giao điểm của đồ thị của hàm số (1) và đường thẳng y = 2x -1. Vì M thuộc đường thẳng y = 2x - 1 và có hoành độ là x = 2 nên tung độ của nó là y = 2 . 2 - 1 = 3.

Như vậy ta có M(2; 3).

Vì M thuộc đồ thị của hàm số (1) nên 3 = a . 2 - 4. Do đó a = 3,5.

b) Gọi N là giao điểm của đồ thị của hàm số (1) và đường thẳng y = -3x + 2. Lập luận tương tự như trên, ta tìm được N(-1; 5) và a = -9.


30 tháng 5 2017

Ôn tập Hàm số bậc nhất

Ôn tập Hàm số bậc nhất

Ôn tập Hàm số bậc nhất