Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.Gọi E là trung điểm AC ; F là trung điểm BC
\(\overrightarrow{MA}+2\overrightarrow{MB}+3\overrightarrow{MC}=\overrightarrow{0}\)
\(\Leftrightarrow\left(\overrightarrow{MA}+\overrightarrow{MC}\right)+2\left(\overrightarrow{MB}+\overrightarrow{MC}\right)=\overrightarrow{0}\)
\(\Leftrightarrow2\overrightarrow{ME}+4\overrightarrow{MF}=\overrightarrow{0}\)
\(\Leftrightarrow\overrightarrow{ME}+2\overrightarrow{MF}=\overrightarrow{0}\)
Điểm M nằm trên đoạn EF sao cho \(\frac{MF}{ME}=\frac{1}{2}\)
đề bài có phải là
a. \(\overrightarrow{MA}+2\overrightarrow{MB}+3\overrightarrow{MC}=\overrightarrow{0}\)
b. \(\overrightarrow{MA}+2\overrightarrow{MB}-4\overrightarrow{MC}=\overrightarrow{0}\)
Bài 1:
\(y=\left(m-1\right)x^2+2mx-3m+1\)
\(=mx^2-x^2+2mx-3m+1\)
\(=m\left(x^2+2x-3\right)-x^2+1\)
Tọa độ điểm cố định mà (Pm) luôn đi qua là:
\(\left\{{}\begin{matrix}x^2+2x-3=0\\y=-x^2+1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\left(x+3\right)\left(x-1\right)=0\\y=-x^2+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x+3=0\\x-1=0\end{matrix}\right.\\y=-x^2+1\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}\left\{{}\begin{matrix}x+3=0\\y=-x^2+1\end{matrix}\right.\\\left\{{}\begin{matrix}x-1=0\\y=-x^2+1\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=-3\\y=-\left(-3\right)^2+1=-9+1=-8\end{matrix}\right.\\\left\{{}\begin{matrix}x=1\\y=-1^2+1=0\end{matrix}\right.\end{matrix}\right.\)