\(\frac{x+1}{x^2-2\left(m-1\right)x+m^2-2m}\)

Tìm m để hà...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 11 2019

Chèm chẹp câu này nhìn ghê cái mẫu nhe

1/ Để hàm số xđ <=> \(x^2-2\left(m-1\right)x+m^2-2m\ne0\)

\(\Delta'=\left(m-1\right)^2-m^2+2m=1\) => py có 2 n0 pb

\(\Rightarrow x=\frac{m-1\pm\sqrt{1}}{2}\)

Vậy để pt trên khác 0<=> \(\left\{{}\begin{matrix}x\ne\frac{m-2}{2}\\x\ne\frac{m}{2}\end{matrix}\right.\)

\(x\in[0;1)\Rightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}\frac{m-2}{2}\ge1\\\frac{m-2}{2}< 0\end{matrix}\right.\\\left[{}\begin{matrix}\frac{m}{2}\ge1\\\frac{m}{2}< 0\end{matrix}\right.\end{matrix}\right.\)

Tự giải nốt nhe

b/ Để hàm số xđ<=> \(\left\{{}\begin{matrix}-x+2m-1\ge0\\x-m+2>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2m-1\ge x\\x>m-2\end{matrix}\right.\)

\(x\in(0;1]\Rightarrow\left\{{}\begin{matrix}2m-1\ge1\\m-2\le0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\ge1\\m\le2\end{matrix}\right.\Rightarrow1\le m\le2\)

P/s: hmm, xem lại hộ tui két quẻ nhe, nhỡ men sai thì toi :))

13 tháng 11 2019

Cảm ơn nhiều nhiều luôn nha

20 tháng 10 2020

ĐK: \(\sqrt{x-2m}-3\ne0\Leftrightarrow x-2m\ne9\Leftrightarrow x\ne9+2m\)

Hàm số xác đinh trên khoảng (3; 5) 

<=>  2m + 9 \(\le\)3 hoặc 2m + 9 \(\ge\)5

<=> m \(\le\)-3 hoặc m \(\ge\)-2

12 tháng 10 2021

Hàm số $y=\sqrt{x-m+2}+\sqrt{x-2m+3}$ xác định khi và chỉ khi
\[\left\{\begin{aligned}&x-m+2\geq 0 \\&x-2m+3\geq 
0\end{aligned}\right. \Leftrightarrow \left\{\begin{aligned}&x\geq m-2 
\\&x\geq 2m-3.\end{aligned}\right. \tag{$*$}\]

  • Khi $m-2\geq 2m-3$ hay $m\leq 1$ thì $(*)$ tương đương $x\geq m-2$. Do đó tập xác định của hàm số đã cho là $[m-2;+\infty)$.
    Yêu cầu bài toán thỏa mãn khi và chỉ khi
    \[(0;+\infty)\subset [m-2;+\infty) \Leftrightarrow \left\{\begin{aligned}&m\leq 1 \\&m-2\leq 0\end{aligned}\right. \Leftrightarrow \left\{\begin{aligned}&m\leq 1 \\&m\leq 2\end{aligned}\right. \Leftrightarrow m\leq 1.\]
  • Khi $m-2< 2m-3$ hay $m> 1$ thì $(*)$ tương đương $x\geq 2m-3$. Do đó tập xác định của hàm số đã cho là $[2m-3;+\infty)$.
    Yêu cầu bài toán thỏa mãn khi và chỉ khi
    \[(0;+\infty)\subset [2m-3;+\infty) \Leftrightarrow \left\{\begin{aligned}&m>1 \\&2m-3\leq 0\end{aligned}\right. \Leftrightarrow \left\{\begin{aligned}&m> 1 \\&m\leq \dfrac{3}{2}\end{aligned}\right. \Leftrightarrow 1<m\leq \dfrac{3}{2}.\]

Kết hợp hai trường hợp trên, ta được $m\leq \dfrac{3}{2}$ là các giá trị thỏa mãn yêu cầu bài toán.

11 tháng 8 2015

a) Với \(x\in\left[0;1\right]\) => x  - 2 < 0 => |x - 2| = - (x -2)

Khi đó, \(f\left(x\right)=2\left(m-1\right)x+\frac{m\left(x-2\right)}{-\left(x-2\right)}=2\left(m-1\right)x-m\)

Để f(x) < 0 với mọi \(x\in\left[0;1\right]\) <=> \(2\left(m-1\right)x-m<0\)  (*)  với mọi \(x\in\left[0;1\right]\)

+) Xét m - 1 > 0 <=> m > 1 

(*) <=> \(x<\frac{m}{2\left(m-1\right)}\). Để (*) đúng với mọi \(x\in\left[0;1\right]\) <=> \(\frac{m}{2\left(m-1\right)}\ge1\) <=> 2(m -1) \(\le\)m <=> m \(\le\) 2 <=> m \(\le\) 2

Kết hợp điều kiện m > 1 =>1 <  m \(\le\) 2

+) Xét m = 1 thì (*) <=> -1 < 0 luôn đúng => m =1 thỏa mãn

+) Xét m - 1 < 0 <=> m < 1

(*) <=> \(x>\frac{m}{2\left(m-1\right)}\). Để (*) đúng với mọi \(x\in\left[0;1\right]\) <=> \(\frac{m}{2\left(m-1\right)}\le0\) <=> m \(\ge\) 0 (do m< 1 ). Kết hợp m < 1 => 0 \(\le\) m < 1

Kết hợp các trường hợp : Với  0 \(\le\)\(\le\) 2 thì .....

b)  Hoành độ giao điểm của đò thị hàm số với Ox là nghiệm của Phương trình : \(2\left(m-1\right)x+\frac{m\left(x-2\right)}{\left|x-2\right|}=0\) (1)

Đồ thị hàm số cắt Ox tại điểm có hoành độ xo thuộc (1;2) => x< 2 => |x- 2| = - (x- 2)

xo là nghiệm của (1) <=> \(2\left(m-1\right)x_o+\frac{m\left(x_o-2\right)}{\left|x_o-2\right|}=0\) <=> \(2\left(m-1\right)x_o-m=0\) 

+) Xét m \(\ne\) 1 thì (2)<=> \(x_o=\frac{m}{2\left(m-1\right)}\). Vì 1 < x< 2 nên \(1<\frac{m}{2\left(m-1\right)}<2\) <=> \(\begin{cases}\frac{m}{2\left(m-1\right)}-1>0\\\frac{m}{2\left(m-1\right)}-2<0\end{cases}\) <=> \(\begin{cases}\frac{-m+2}{2\left(m-1\right)}>0\left(a\right)\\\frac{-3m+4}{2\left(m-1\right)}<0\left(b\right)\end{cases}\) 

Giải (a) <=> 1 < m < 2

Giải (b) <=> m < 1 hoặc m > 4/3

Kết hợp nghiệm của (a) và (b) => 4/3 < m < 2

+) Xét m = 1 thì (2) <=> -1 = 0 Vô lí

Vậy Với 4/3 < m < 2 thì đồ thị hàm số cắt Ox tại điểm thuộc (1;2)

 

18 tháng 6 2016

bạn viết vậy k hiểu đề. viết lại đi

19 tháng 6 2016

tìm m để hàm số f(x)=\(\frac{x+1}{x^2-2\left(m+1\right)x+m^2+2m}\)xác định trên x thuộc (0,1) 

11 tháng 10 2019

Để hàm số y = f(x) = \(\frac{2x-3}{x^2-\left(2m-1\right)x+m^2}\) xác định trên \(ℝ\)khi và chỉ khi  \(x^2-\left(2m-1\right)x+m^2\ne0\)\(\forall x\inℝ\)

Nghĩa là \(x^2-\left(2m-1\right)x+m^2=0\) vô nghiệm

<=> \(\Delta< 0\)

<=> \(\left(2m-1\right)^2-4m^2< 0\)

<=> \(-4m+1< 0\)

<=> m > 1/4.