Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
f(x) = ( x2010 + x20 + x19 + x + 1 ) : ( 1 - x2 )
f(x) = ( x2010 + x20 + x19 + x + 1 ) : ( 1 - x ) ( 1 + x )
Áp dụng định lý Bezout ta có 2 đa thức dư :
+) f(1) = 12010 + 120 + 119 + 1 + 1 = 5
+) f(-1) = (-1)2010 + (-1)20 + (-1)19 - 1 + 1 = 1
Vậy có 2 đa thức dư là f(1) = 5 và f(-1) = 1
2.1
a) Áp dụng định lý Bezout:
\(P\left(x\right)⋮2x+3\)
\(\Rightarrow P\left(\frac{-3}{2}\right)=0\)
hay \(6.\frac{-27}{8}-7.\frac{9}{4}-16.\frac{-3}{2}+m=0\)
\(\Leftrightarrow\frac{-81}{4}-\frac{63}{4}+24+m=0\)
\(\Rightarrow m=12\)
Vậy m = 12
\(A=x^3-8-\left(x^3+3x^2+3x+1\right)+3\left(x^2-1\right)\)
\(=x^3-8-x^3-3x^2-3x-1+3x^2-3\)
\(=\left(x^3-x^3\right)+\left(-3x^2+3x^2\right)-3x-8-3\)
\(=-3x-11\)
a, \(x^3-2x^2+3x-6=x\left(x^2+3\right)-2\left(x^2+3\right)=\left(x-2\right)\left(x^2+3\right)\)
b, \(x^2+2x+1-4y^2=\left(x+1\right)^2-\left(2y\right)^2=\left(x+1-2y\right)\left(x+1+2y\right)\)