\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 3 2020

.......................................................................

Bài 1: Cho G là trọng tâm △ABC. Qua G vẽ đường thẳng song song AB và AC cắt BC lần lượt tại D, E. Chứng minh: a)\(\frac{BD}{BC}=\frac{1}{3}\) b)\(BD=DE=EC\) Bài 2: Đường thẳng d cắt các cạnh AB, AD và các đường chéo AC của hình bình hành ABCD lần lượt tại E, F, O. Chứng minh: \(\frac{AB}{AE}+\frac{AD}{AF}=\frac{AC}{AO}\) Bài 3: Cho A', B', C' lần lượt nằm trên cạnh BC, AC, AB của △ABC. Biết rằng AA',...
Đọc tiếp

Bài 1: Cho G là trọng tâm △ABC. Qua G vẽ đường thẳng song song AB và AC cắt BC lần lượt tại D, E. Chứng minh:

a)\(\frac{BD}{BC}=\frac{1}{3}\)

b)\(BD=DE=EC\)

Bài 2: Đường thẳng d cắt các cạnh AB, AD và các đường chéo AC của hình bình hành ABCD lần lượt tại E, F, O.

Chứng minh: \(\frac{AB}{AE}+\frac{AD}{AF}=\frac{AC}{AO}\)

Bài 3: Cho A', B', C' lần lượt nằm trên cạnh BC, AC, AB của △ABC. Biết rằng AA', BB', CC' đồng quy tại M.

Chứng minh:\(\frac{AM}{A'M}=\frac{AB'}{CB'}+\frac{AC'}{BC'}\)

Bài 4: Cho △ABC và trung tuyến AM. Điểm O bất kỳ thuộc AM. F là giao điểm của BO và AC, E là giao điểm của OC và AB. Từ M kẻ đường thẳng song song OC cắt AB tại H và đường thẳng song song OB cắt AC tại K.Chứng minh:

a)EF//HK

b)EF//BC

Bài 5: Cho △ABC, kẻ đường thẳng song song BC cắt AB ở D và cắt AC ở E. Qua C kẻ Cx//AB và cắt DE ở G. Gọi H là giao điểm của AC và BG. Kẻ HI//AB (I thuộc BC).Chứng minh:

a)\(DA.EG=DB.DE\)

b)\(HC^2=HE.HA\)

c)\(\frac{1}{HI}=\frac{1}{AB}+\frac{1}{CG}\)

0
14 tháng 1 2018

A B D C F E

Vì DF//AB (gt) . Áp dụng định lý Talet ta có : \(\frac{AF}{AC}=\frac{BD}{BC}\)(1)

Vì DE//AC (gt) . Áp dụng định lý Talet ta có : \(\frac{AE}{AB}=\frac{CD}{BC}\)(2)

Từ (1);(2) \(\Rightarrow\frac{AE}{AB}+\frac{AF}{AC}=\frac{BD}{BC}+\frac{CD}{BC}=\frac{BD+CD}{BC}=\frac{BC}{BC}=1\)(Đpcm)

Bài 1:a) tìm x,y,z biết\(x^2+y^2+z^2=xy+yz+zx\)\(x^{2009}+y^{2009}+z^{2009}=3^{2010}\)b) Giải phương trình\(\left(12x+7\right)^2\left(3x+2\right)\left(2x+1\right)=3\)Bài 2:Cho hình thang ABCD(AB//CD), O la giao điểm của hai đường chéo, qua O kẻ đường thẳng song song với AB và cắt AD tại E và cắt BC tại Fa)CMR: Diện tích tam giác AOD bằng diện tích tam giác BOCb)CM: \(\frac{1}{AB}+\frac{1}{CD}=\frac{2}{EF}\)c) Gọi K là điểm bất kì...
Đọc tiếp

Bài 1:

a) tìm x,y,z biết

\(x^2+y^2+z^2=xy+yz+zx\)

\(x^{2009}+y^{2009}+z^{2009}=3^{2010}\)

b) Giải phương trình

\(\left(12x+7\right)^2\left(3x+2\right)\left(2x+1\right)=3\)

Bài 2:Cho hình thang ABCD(AB//CD), O la giao điểm của hai đường chéo, qua O kẻ đường thẳng song song với AB và cắt AD tại E và cắt BC tại F

a)CMR: Diện tích tam giác AOD bằng diện tích tam giác BOC

b)CM: \(\frac{1}{AB}+\frac{1}{CD}=\frac{2}{EF}\)

c) Gọi K là điểm bất kì thuộc OE,nêu cách dựng đường thẳng đi qua K và chia đôi diện tích tam giác DEF

Bài 3: Cho hình bình hành ABCD, vẽ đường thẳng d cắt các cạnh AB, AD tại M và K và cắt đường chéo AC tại G. CMR: \(\frac{AB}{AM}+\frac{AD}{AK}=\frac{AC}{AG}\)

TRONG BÀI 2, BÀI 3 BIẾT CÂU NÀO LÀM CÂU ĐÓ

GIÚP MÌNH BÀI HÌNH NHÉ MÌNH SẼ KẾT BẠN VÀ THƯỞNG 1 TICK/CÂU

 

0