Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
10. a)
\(\frac{x^4}{a}+\frac{y^4}{b}=\frac{1}{a+b}\Leftrightarrow\frac{x^4}{a}+\frac{y^4}{b}=\frac{\left(x^2+y^2\right)^2}{a+b}\)
\(\Leftrightarrow\left(a+b\right)\left(x^4+y^4\right)=ab\left(x^2+y^2\right)^2\Leftrightarrow\left(bx^2-ay^2\right)^2=0\Leftrightarrow bx^2=ay^2\)
b) Từ \(ay^2=bx^2\Rightarrow\frac{y^2}{b}=\frac{x^2}{a}=\frac{x^2+y^2}{a+b}=\frac{1}{a+b}\)
\(\Rightarrow\frac{x^{2008}}{a^{1004}}=\frac{1}{\left(a+b\right)^{1004}}\); \(\frac{y^{2008}}{b^{1004}}=\frac{1}{\left(a+b\right)^{1004}}\)
\(\Rightarrow\frac{x^{2008}}{a^{1004}}+\frac{y^{2008}}{b^{1004}}=\frac{2}{\left(a+b\right)^{1004}}\)
25. Ta có \(\left(ax+by+cz\right)^2=0\Leftrightarrow a^2x^2+b^2y^2+c^2z^2=-2\left(abxy+bcyz+acxz\right)\)
Xét mẫu số của P : \(bc\left(y-z\right)^2+ac\left(x-z\right)^2+ab\left(x-y\right)^2=bc\left(y^2-2yz+z^2\right)+ac\left(x^2-2xz+z^2\right)+ab\left(x^2-2xy+y^2\right)\)
\(=y^2bc-2bcyz+bcz^2+acx^2-2xzac+acz^2+abx^2-2abxy+aby^2\)
\(=y^2bc+bcz^2+acx^2+acz^2+abx^2+aby^2-2\left(abxy+xzac+bcyz\right)\)
\(=y^2bc+bcz^2+acx^2+acz^2+abx^2+aby^2+a^2x^2+b^2y^2+c^2z^2\)
\(=c\left(ax^2+by^2+cz^2\right)+b\left(ax^2+by^2+cz^2\right)+a\left(ax^2+by^2+cz^2\right)=\left(a+b+c\right)\left(ax^2+by^2+cz^2\right)\)
\(\Rightarrow P=\frac{ax^2+by^2+cz^2}{\left(a+b+c\right)\left(ax^2+by^2+cz^2\right)}=\frac{1}{a+b+c}=\frac{1}{2007}\)
8. \(\frac{x^3}{a^3}+\frac{y^3}{b^3}=\left(\frac{x}{a}+\frac{y}{b}\right)^3-3.\frac{xy}{ab}\left(\frac{x}{a}+\frac{y}{b}\right)=1^3-3.\left(-2\right).1=7\)
1) \(\left(a-b\right)\cdot\sqrt{\frac{ab}{\left(a-b\right)^2}}=\left(a-b\right)\cdot\frac{\sqrt{ab}}{a-b}=\sqrt{ab}\)
2) \(\frac{x-y}{y}\cdot\sqrt{\frac{y^4}{x^2-2xy+y^2}}=\frac{x-y}{y}\cdot\frac{\sqrt{y^4}}{\sqrt{\left(x-y\right)^2}}=\frac{x-y}{y}\cdot\frac{y^2}{x-y}=y\)
Đặt B là mẫu thức của P thì :
B = ab(x - y)2 + bc(y - z)2 + ca(z - x)2 = abx2 - 2abxy + aby2 + bcy2 - 2bcyz + bcz2 + caz2 - 2cazx + cax2
= ax2(b + c) + by2(a + c) + cz2(a + b) - 2(bcyz + acxz + abxy) (1)
ax + by + cz = 0 => (ax + by + cz)2 = 0 <=> a2x2 + b2y2 + c2z2 + 2(bcyz + acxz + abxy) = 0
=> -2(bcyz + acxz + abxy) = a2x2 + b2y2 + c2z2 (2)
Từ (1) và (2),ta có : B = ax2(b + c) + by2(a + c) + cz2(a + b) + a2x2 + b2y2 + c2z2
= ax2(a + b + c) + by2(a + b + c) + cz2(a + b + c) = (a + b + c)(ax2 + by2 + cz2)
\(\Rightarrow P=\frac{1}{a+b+c}=2017\)
Cả hai đề đều sai ^^
Sửa c+1 ở 1.
Câu 2 thử vài số VD: a=-1 ; b=-2 ; c=2 ^^ sai.
ko có sai đề đâu bn câu số 2 3 số bn thử là sai vì nó khi cộng lại ko bằng 0
1, Mk nghĩ là yêu cầu: Tính \(\frac{ax-by-cz}{x-y-z}\) theo x,y,z
Có \(\left\{{}\begin{matrix}x^2-yz=a\\y^2+xz=b\\z^2+xy=c\end{matrix}\right.\)
<=>\(\left\{{}\begin{matrix}x^3-xyz=ax\\y^3+xyz=by\\z^3+xyz=cz\end{matrix}\right.\)
Có: \(ax-by-cz=x^3-xyz-y^3-xyz-z^3-xyz=x^3-y^3-z^3-3xyz\)
=\(\left(x-y\right)^3+3xy\left(x-y\right)-z^3-3xyz\)
=\(\left(x-y-z\right)\left[\left(x-y\right)^2+z\left(x+y\right)+z^2\right]+3xy\left(x-y-z\right)\)
=\(\left(x-y-z\right)\left(x^2-2xy+y^2+xz+yz+z^2+3xy\right)\)
=\(\left(x-y-z\right)\left(x^2+y^2+z^2+xy+xz+yz\right)\)
=>\(\frac{ax-by-cz}{x-y-z}=x^2+y^2+z^2+xy+xz+yz\)
Bài 2 là loại bài buồn ngủ, cách làm cơ bản như sau:
Nhìn hệ số dự đoán điểm rơi xảy ra tại \(x=y\), vậy để tìm hệ số, ta thiết lập các BĐT sau:
\(x^2+y^2\ge2xy\) ; \(a^2x^2+b^2z^2\ge2abxz\) ; \(a^2y^2+b^2z^2\ge2abyz\)
\(\Rightarrow\left(a^2+1\right)x^2+\left(a^2+1\right)y^2+2b^2z^2\ge2\left(xy+abyz+abzx\right)\) (1)
\(\Rightarrow\left\{{}\begin{matrix}\frac{2b^2}{a^2+1}=\frac{9}{2}\\ab=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}4b^2=9a^2+9\\a=\frac{1}{b}\end{matrix}\right.\)
\(\Rightarrow4b^2=\frac{9}{b^2}+9\Rightarrow4b^4-9b^2-9=0\Rightarrow b=\sqrt{3}\) \(\Rightarrow a=\frac{1}{\sqrt{3}}\)
Hệ số đã xong, vậy thì bài toán được giải như sau:
Ta có:
\(x^2+y^2\ge2xy\) ; \(\frac{1}{3}y^2+3z^2\ge2yz\) ; \(\frac{1}{3}x^2+3z^2\ge2xz\)
Cộng vế với vế:
\(\frac{4}{3}\left(x^2+y^2+\frac{9}{2}z^2\right)\ge2\left(xy+yz+zx\right)\)
\(\Rightarrow A\le\frac{2}{3}.5=\frac{10}{3}\)
Dấu "=" xảy ra khi \(\left[{}\begin{matrix}x=y=\sqrt{2};z=\frac{\sqrt{2}}{3}\\x=y=-\sqrt{2};z=-\frac{\sqrt{2}}{3}\end{matrix}\right.\)