Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{h}=\frac{1}{2}.\left(\frac{1}{a}+\frac{1}{b}\right)\Rightarrow\frac{1}{h}=\frac{1}{2}.\frac{a+b}{ab}\Rightarrow\frac{1}{h}=\frac{a+b}{2ab}\)
\(\Rightarrow2ab=h\left(a+b\right)\Rightarrow ab+ab=ha+hb\)
\(\Rightarrow ab-hb=ah-ab\)
\(\Rightarrow\left(a-h\right).b=\left(h-b\right).a\)
\(\Rightarrow\frac{a-h}{h-b}=\frac{a}{b}\) (đpcm)
1/h=1/2(1/a+1/b)=1/2a+1/2b=(a+b)/2ab
=>(a+b/)2ab-1/h=0
quy dong len ta co
(a+b)h/2abh-2ab/2abh=0=> (ah+bh-2ab)/2abh=0 =>ah+bh-2ab=0
=>ah+bh-ab-ab=0
=>a(h-b)-b(a-h)=0
=>a(h-b)=b(a-h)
=>a/b=(a-h)(h-b)
Bài 1:
a) \(A=-3+\frac{1}{1+\frac{1}{1+\frac{1}{3}}}\)
\(A=-3+\frac{1}{1+\frac{1}{\frac{4}{3}}}\)
\(A=-3+\frac{1}{1+\frac{3}{4}}\)
\(A=-3+\frac{1}{\frac{7}{4}}\)
\(A=-3+\frac{4}{7}=-\frac{17}{7}\)
1.
Ta có : \(\frac{2bz-3cy}{a}=\frac{3cx-az}{2b}=\frac{ay-2bx}{3c}\)
\(\Rightarrow\frac{a.\left(2bz-3cy\right)}{a^2}=\frac{2b.\left(3cx-az\right)}{4b^2}=\frac{3c.\left(ay-2bx\right)}{9c^2}\)
\(\Rightarrow\frac{2abz-3acy}{a^2}=\frac{6bcx-2abz}{4b^2}=\frac{3acy-6bcx}{9c^2}\)
Áp dụng tính chất của dãy tỉ số bằng hau ta có :
\(\frac{2abz-3acy}{a^2}=\frac{6bcx-2abz}{4b^2}=\frac{3acy-6bcx}{9c^2}\)
\(=\frac{2abz-3acy+6bcx-2abz+3acy-6bcx}{a^2+4b^2+9c^2}=0\)
\(\Rightarrow\hept{\begin{cases}\frac{2bz-3cy}{a}=0\\\frac{3cx-az}{2b}=0\\\frac{ay-2bx}{3c}=0\end{cases}}\) \(\Rightarrow\hept{\begin{cases}2bz-3cy=0\\3cx-az=0\\ay-2bx=0\end{cases}}\) \(\Rightarrow\hept{\begin{cases}2bz=3cy\\3cx=az\\ay=2bx\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}\frac{z}{3c}=\frac{y}{2b}\\\frac{x}{a}=\frac{z}{3c}\\\frac{y}{2b}=\frac{x}{a}\end{cases}}\Rightarrow\frac{x}{a}=\frac{y}{2b}=\frac{x}{3c}\left(đpcm\right)\)
Chúc bạn học tốt !!!
1. Sửa lại dòng cuối
\(\Rightarrow\frac{x}{a}=\frac{y}{2b}=\frac{z}{3c}\)
P/s: Bài toán này khá hay đó !!
Ta có : \(a\left(\frac{1}{b}+\frac{1}{c}\right)=b\left(\frac{1}{a}+\frac{1}{c}\right)=c\left(\frac{1}{a}+\frac{1}{b}\right)\)
\(\Leftrightarrow\frac{a^2c+a^2b}{abc}=\frac{b^2c+ab^2}{abc}=\frac{c^2b+c^2a}{abc}\)
Mà : \(a,b,c>0\)
\(\Rightarrow a^2c+a^2b=b^2c+ab^2=c^2b+c^2a\)
+) Xét : \(a^2c+a^2b=b^2c+ab^2\)
\(\Leftrightarrow ab\left(a-b\right)+c\left(a^2-b^2\right)=0\)
\(\Leftrightarrow\left(a-b\right)\left(ab+ca+cb\right)=0\)
\(\Leftrightarrow a-b=0\Leftrightarrow a=b\) (1)
( Do \(a,b,c>0\Rightarrow ab+ca+cb>0\) )
+) Xét \(b^2c+ab^2=c^2b+c^2a\)
\(\Leftrightarrow bc\left(b-c\right)+a\left(b^2-c^2\right)=0\)
\(\Leftrightarrow\left(b-c\right)\left(bc+ab+ac\right)=0\)
\(\Leftrightarrow b-c=0\Leftrightarrow b=c\)(2)
( Do \(a,b,c>0\Rightarrow ab+ca+cb>0\) )
Từ (1) và (2) \(\Rightarrow a=b=c\) (đpcm)