\(^2\) - x + 3

g ( x ) = x\(^2\)<...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 3 2018

a) f(x)+g(x)=(2x2-x+3)+(x2-3)

=2x2-x+3+x2-3

=(2x2+x2)-x+(3+-3)

=3x2-x

=>h(x)=3x2-x

b) f(x)-g(x)=(2x2-x+3)-(x2-3)

=2x2-x+3-x2+3

=(2x2-x2)-x+(3+3)

=x2-x+6

=>q(x)=x2-x+6

c)Ta có:h(x)=0 =>3x2-x =0

=>3xx-x =0

=>x(3-1)x =0

=>2xx =0

=>x2 =0

=>x =0

vậy nghiệm của h(x) là 0

31 tháng 3 2018

\(a,h\left(x\right)=f\left(x\right)+g\left(x\right)\)

\(=2x^2-x+3+x^2-3\)

\(=3x^2-x\)

\(q\left(x\right)=f\left(x\right)-g\left(x\right)\)

\(=2x^2-x+3-x^2+3\)

\(=x^2-x+6\)

c, \(h\left(x\right)=3x^2-x=0\)

\(\Leftrightarrow x\left(3x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\3x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{3}\end{matrix}\right.\)

Vậy nghiệm của h(x) là x = 0 hoặc x = \(\dfrac{1}{3}\)

5 tháng 11 2017

Giải như sau.

(1)+(2)⇔x2−2x+1+√x2−2x+5=y2+√y2+4⇔(x2−2x+5)+√x2−2x+5=y2+4+√y2+4⇔√y2+4=√x2−2x+5⇒x=3y(1)+(2)⇔x2−2x+1+x2−2x+5=y2+y2+4⇔(x2−2x+5)+x2−2x+5=y2+4+y2+4⇔y2+4=x2−2x+5⇒x=3y

⇔√y2+4=√x2−2x+5⇔y2+4=x2−2x+5, chỗ này do hàm số f(x)=t2+tf(x)=t2+t đồng biến ∀t≥0∀t≥0
Công việc còn lại là của bạn ! 

16 tháng 6 2020

a) f(x) = -x5 - 7x4 - 2x3 + x2 + 4x + 8

g(x) = x5 + 7x4 + 2x3 + 3x2 - 5x - 6

f(x) + g(x) = -x5 - 7x4 - 2x3 + x2 + 4x + 8 + x5 + 7x4 + 2x3 + 3x2 - 5x - 6

                 = ( x5 - x5 ) + ( 7x4 - 7x4 ) + ( 2x3 - 2x3 ) + ( 3x2 + x2 ) + ( 4x - 5x ) + ( 8 - 6 )

                 = 4x2 - x + 2

g(x) - f(x) = x5 + 7x4 + 2x3 + 3x2 - 5x - 6 - ( -x5 - 7x4 - 2x3 + x2 + 4x + 8 )

                = x5 + 7x4 + 2x3 + 3x2 - 5x - 6 + x5 + 7x4 + 2x3 - x2 - 4x - 8

               = ( x5 + x5 ) + ( 7x4 + 7x4 ) + ( 2x3 + 2x3 ) + ( 3x2 - x2 ) + ( -5x - 4x ) + ( -6 - 8 )

                = 2x5 + 14x4 + 4x3 + 2x2 -9x - 14

16 tháng 6 2020

Đặt H(x) = g(x) + f(x)

=> H(x) = 4x2 - x + 2

H(x) = 0 <=> 4x2 - x + 2 = 0

              <=> x(4x - 1) = -2

x-1-212
4x-121-2-1
x1/41/2-1/40
 loạiloạiloạiloại

=> Không có giá trị x thỏa mãn 

Vậy H(x) vô nghiệm

Mình chỉ biết làm thế này thôi

23 tháng 4 2017

Bài 1:

a/ Kết quả: f(x) - g(x) + h(x) = 2x - 1

(tự ghép cặp vào r` tính hoặc tính = hàng dọc nhé bn, muộn r` , mk k muốn đánh máy)

b/ 2x - 1 = 0

<=> 2x = 1

<=> x = \(\dfrac{1}{2}\)

Vậy x = .... để f(x) - g(x) + h(x) = 0

Bài 2:

a/ dễ --> tự lm cko quen để đỡ mất căn bản nhé bn!

b/ sửa: g(x) = ..... + 2x3 + 3x

Làm: kết quả: 3x2 + 7x (ns chung là lười nên mk k muốn đánh máy, k hiểu thì ib lại vs mk)

c/ h(x) = 3x2 + 7x = 0

<=> x(3x + 7) = 0

<=> \(\left[{}\begin{matrix}x=0\\3x+7=0\Rightarrow3x=-7\Rightarrow x=\dfrac{-7}{3}\end{matrix}\right.\)

Vậy đa thức h(x) có 2 no là:....(tự ghi)

26 tháng 4 2017

tớ thấy bạn làm nhâm 1 phần

30 tháng 3 2017

a) \(P\left(x\right)=f\left(x\right)-g\left(x\right)\)

\(P\left(x\right)=\left(2x^3+x^2-3x-4\right)-\left(-x^3+3x^2+5x-1\right)\)

\(P\left(x\right)=2x^3+x^2-3x-4+x^3-3x^2-5x+1\)

\(P\left(x\right)=2x^3+x^3+x^2-3x^2-3x-5x-4+1\)

\(P\left(x\right)=3x^3-2x^2-8x-3\)

b) \(R\left(x\right)=f\left(x\right)-h\left(x\right)\)

\(R\left(x\right)=\left(2x^3+x^2-3x-4\right)-\left(-3x^3+2x^2-x-3\right)\)

\(R\left(x\right)=2x^3+x^2-3x-4+3x^3-2x^2+x+3\)

\(R\left(x\right)=2x^3+3x^3+x^2-2x^2-3x+x-4+3\)

\(R\left(x\right)=5x^3-x^2-2x-1\)

c) Mình chưa học ạ nên không biết làm.

30 tháng 3 2017

a)P(x)=(2x3+x2-3x-4) - (-x3+3x2+5x-1)
= 2x3+x2-3x-4 - x3-3x2-5x+1
= (2x3-x3)+(x2-3x2) +(-3x-5x)+(-4+1)
= x3-2x2-8x-3

b) R(x)=(2x3+x2-3x-4) - (-3x3+2x2-x-3)
= 2x3+x2-3x-4 - 3x3-2x2+x+3
=(2x3-3x3)+(x2-2x2)+(-3x+x)+(-4+3)
= -x3-x2-2x-1

6 tháng 4 2018

a)   \(f\left(x\right)-g\left(x\right)+h\left(x\right)\)

\(=x^3-2x^2+3x+1-\left(x^3+x-1\right)+\left(2x^2-1\right)\)

\(=x^3-2x^2+3x+1-x^3-x+1+2x^2-1\)

\(=2x+1\)

b)      \(f\left(x\right)-g\left(x\right)+h\left(x\right)=0\)

\(\Leftrightarrow\)\(2x+1=0\)

\(\Leftrightarrow\)\(x=-\frac{1}{2}\)