Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đk: \(k\ge0\)
a)
A(0,2\(\sqrt{3}\))
x=0
\(\Rightarrow y=\sqrt{k}+\sqrt{3}\)
\(\Rightarrow\sqrt{k}=2\sqrt{3}-\sqrt{3}=\sqrt{3}\)
\(\Rightarrow k=3\) nhận
b)
\(B\left(1;0\right)\)
\(\Leftrightarrow\dfrac{\sqrt{k}+1}{\sqrt{3}-1}.1+\sqrt{k}+\sqrt{3}=0\)
\(\Leftrightarrow\sqrt{k}+1+\sqrt{k}.\left(\sqrt{3}-1\right)+\sqrt{3}\left(\sqrt{3}-1\right)=0\)
\(\Leftrightarrow\sqrt{3}\sqrt{k}+4-\sqrt{3}=0\)
\(4>\sqrt{3}\Rightarrow Vo..N_0\)
(d) không đi qua điểm B(1;0)
c) Sửa đề \(k\ge0\)
\(\Leftrightarrow y=\dfrac{\sqrt{k}.x+x+\sqrt{3}\sqrt{k}-\sqrt{k}+\sqrt{3}\left(\sqrt{3}-1\right)}{\sqrt{3}-1}\)
\(\Leftrightarrow y=\dfrac{\sqrt{k}\left(x+\sqrt{3}-1\right)+x+\sqrt{3}\left(\sqrt{3}-1\right)}{\sqrt{3}-1}\)
Với \(x=1-\sqrt{3}\) => y=\(\dfrac{\left(\sqrt{3}-1\right)\left(\sqrt{3}-1\right)}{\sqrt{3}-1}=\sqrt{3}-1\) không phụ thuộc k
Điểm cố định
D\(\left(\left(1-\sqrt{3}\right);\left(\sqrt{3}+1\right)\right)\)
a) lần lượt cho x=-1, y=2 vào đường thẳng y=(m-2)x+n
ta có 2=-(m-2)+n
tương tự như vậy cho x=3, y=-4 ta có đường thẳng -4=(m-2)*3+n
sau đó cho 2 đường thẳng tương đương
suy ra m=0,5=1/2;
suy ra n=0,5=1/2
vậy m=0,5, n=0,5 thì (d) đi qua 2 điểm A(-1;2) và B(3;-4)
d) vì hai đương thẳng trùng nhau nên có a=a' , b=b'
mà a=m-2, b=n
a'=2 , b'=-3
suy ra m=4, n=-3
vậy m=4, n=-3 thì hai đường thẳng trùng nhau
c) vì hai đương thẳng cắt nhau có a#a', b=b'
mà a=m-2, b=n
a'=-1,5, b'=0,5
nên m-2 # -1,5
n=0,5
suy ra m # 0,5
n=0,5
vậy m # 0,5, n=0,5 thì hai đương thẳng cắt nhau
4) Cùng cắt nhau tại 1 điểm trên trục tung nên x = 0 => m - 3 = 5 => m = 8
3) \(m=\frac{2+\sqrt{2}}{2\sqrt{2}-1}=\frac{\left(2+\sqrt{2}\right)\left(2\sqrt{2}+1\right)}{7}=\frac{5\sqrt{2}+6}{7}\)