Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải
a) Từ giả thiết: \(\dfrac{AM}{MB}=\dfrac{7}{4}\Rightarrow\) \(\dfrac{\left(AM+MB\right)}{AM}=\dfrac{\left(7+4\right)}{7}=\dfrac{11}{7}\)
hay \(\dfrac{AB}{AM}=\dfrac{11}{7}:\dfrac{AM}{MB}=\dfrac{7}{4}\)
\(\Rightarrow\dfrac{AM+MB}{MB}=\dfrac{7+4}{4}=\dfrac{11}{4}\) hay \(\dfrac{AB}{BM}=\dfrac{11}{4}\)
b) Ta có: CB = AB - CA = 6cm - 3,6cm = 2,4cm
DA = AB + BD = 6 + BD
Từ giả thiết: \(\dfrac{DA}{DB}=\dfrac{CA}{CB}=\dfrac{3.6}{2.4}=\dfrac{3}{2}\)
\(\Rightarrow\dfrac{\left(DB+6\right)}{DB}=\dfrac{3}{2}\)
\(\Rightarrow\) 2DB + 12 = 3DB \(\Rightarrow\) DB = 12 cm
a: CA/CB=3/5
=>CA=3/5CB
AB=AC+CB=8/5CB
\(\dfrac{AB}{AC}=\dfrac{8\cdot CB}{5}:\dfrac{3\cdot CB}{5}=\dfrac{8}{5}\cdot\dfrac{5}{3}=\dfrac{8}{3}\)
b: DA/DB=3/5
=>DA=3/5DB
=>AB=2/5DB
=>DB=24:2/5=60(cm)
=>DA=36cm
CA=3/5CB
CA+CB=AB
=>3/5CB+CB=AB
=>AB=8/5CB
=>CB=5/8AB
=>CA=3/8AB=3/8*24=9cm
A D C B Hình ảnh chỉ mang tính chất minh họa :D
Ta có: \(CB=AB-AC=6-3,6=2,4cm\)
Và: \(DA=AB+BD=6+DB\)
Theo giả thiết: \(\frac{DA}{DB}=\frac{CA}{CB}=\frac{3,6}{2,4}=\frac{3}{2}\)
Thay: \(DA=6+DB\)
Ta có: \(\frac{6+DB}{DB}=\frac{3}{2}\Rightarrow2\left(6+DB\right)=3DB\Rightarrow12+2DB=3DB\Rightarrow DB=12cm\)
a: Xét ΔBAC có DF//AC
nên BF/FA=BD/DC=1/2
=>BF=1/2FA
=>AF/AB=2/3
Xét ΔCAB có DE//AB
nên CD/CB=CE/CA
=>CE/CA=2/3
=>CE=2/3CA
=>AE=1/3CA
=>AE/CE=1/2
=>AE/AC=1/3
b: \(\dfrac{AE}{EM}=\dfrac{AE}{\dfrac{1}{2}\cdot AC}=\dfrac{AE}{AC}\cdot\dfrac{1}{\dfrac{1}{2}}=\dfrac{1}{3}\cdot2=\dfrac{2}{3}=\dfrac{AF}{FB}\)
=>EF//BM
Áp dụng định lí Menelaus :
\(\frac{AE}{CE}\).\(\frac{AD}{BD}\).\(\frac{BF}{CF}\)= 1
Mà AE = CE, AD = 1/3BD
=> BF/CF = 3
=> CF = 1/2 BC
Tự vẽ hình nhé Nữ hoàng sến súa là ta
Lấy K là trung điểm của AB. Nối K với E,K và C. Từ đó ta thấy D là trung điểm của AK
Do \(KEKE\)là đường trung bình tam giác \(ABCABC\)nên KE // BCKE // BC và KE=12BCKE=12BC
Lại có \(DEDE\)là đường trung bình tam giác \(AKCAKC\)nên DE // KCDE // KC
Ta thấy \(\Delta KEC\)và \(\Delta FCE\)có:
+ Chung CE
+ \(\widehat{KEC}=\widehat{FCE}\)( so le trong )
+ \(\widehat{ADE}=\widehat{ACK}\)( đồng vị ) ( mà \(\widehat{ADE}=\widehat{CEF}\Rightarrow\widehat{CEF}=\widehat{ACK}\))
\(\Rightarrow\Delta KEC=\Delta FCE\)( g.c.g ) \(\Rightarrow CF=EK\)
Mà \(EK=\frac{1}{2}BC\Rightarrow CF=\frac{1}{2}BC\)
Vậy \(CF=\frac{1}{2}BC\left(đpcm\right)\)