\(\Delta\)ABC vuông tại A, đường cao AH. Gọi M,N theo thứ tự là trung điểm của HC...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 3 2017

A B C D F O E K I

a)

Xét tam giác ABF và tam giác ACB có:

BAC chung

ABF = ACB (gt)

=> Tam giác ABF ~ Tam giác ACB (g - g)

=> \(\dfrac{\text{AF}}{AB}=\dfrac{AB}{AC}\)

=> \(\dfrac{\text{AF}}{4}=\dfrac{4}{8}\)

=> AF = 2 (cm)

Ta có:

AF + FC = AC

2 + FC = 8

FC = 6 (cm)

b)

D là trung điểm của BC (AD là đường trung tuyến của tam giác ABC)

=> \(DC=\dfrac{1}{2}BC\)

Kẻ đường cao AH (H \(\in\) BC)

Ta có: \(\dfrac{S_{ABC}}{S_{ADC}}=\dfrac{\dfrac{1}{2}\times AH\times AB}{\dfrac{1}{2}\times AH\times DC}=\dfrac{AB}{\dfrac{1}{2}AB}=2\)

=> SABC = 2SADC

c)

Tam giác CKA có OF // KA (gt) nên theo định lý Talet

=> \(\dfrac{FC}{FA}=\dfrac{OC}{OK}\left(1\right)\)

Tam giác OCI có KA // CI (gt) nên theo hệ quả của định lý Talet

=> \(\dfrac{OC}{OK}=\dfrac{CI}{KA}\left(2\right)\)

(1) và (2)

=> \(\dfrac{FC}{FA}=\dfrac{CI}{KA}\)

d)

Tam giác DCI có CI // BO nên theo hệ quả của định lý Talet

=> \(\dfrac{DB}{DC}=\dfrac{BO}{CI}\)

Tam giác EBO có AK // BI nên theo hệ quả của định lý Talet

=> \(\dfrac{EA}{EB}=\dfrac{AK}{BO}\)

Ta có:

\(\dfrac{DB}{DC}\times\dfrac{EA}{EB}\times\dfrac{FC}{FA}=\dfrac{BO}{CI}\times\dfrac{AK}{BO}\times\dfrac{CI}{KA}=1\)

27 tháng 3 2017

ohhhhhh batngo

phải gọi là max dài luôn á

20 tháng 4 2018

hình bạn tự vẽ nhá

a) Xét tam giác BAH và tam giác ABC , có :

A^ = H^ = 90O

B^ : góc chung

=> tam giác HAB ~ tam giác ACB ( g.g)

b) ADĐL pitago vào tam giác vuông ABC , có :

AB2 + AC2 = BC2

=> 122 + 166 = BC2

=> BC2 = 400

=> BC = 20 cm

Vì tam giác ACB ~ tam giác HAB , nên ta có :

\(\dfrac{AH}{AC}\)= \(\dfrac{AB}{BC}\)

=> \(\dfrac{AH}{16}\)=\(\dfrac{12}{20}\)

=> AH = 9,6 cm

Ta có : AD là phân giác của A^

=> \(\dfrac{AB}{AC}\)= \(\dfrac{BD}{DC}\)

=> \(\dfrac{12}{16}\)=\(\dfrac{BD}{20-BD}\)

=> 16BD = 240 - 12BD

=> 28BD = 240

=> BD = 8,5 cm

5 tháng 3 2019

hình bạn tự vẽ ak nghen!!!

a)

Xét tam giác ABC và HBA có:

\(\left\{{}\begin{matrix}\widehat{BAC}=\widehat{BHA}=90^o\\chung\widehat{B}\end{matrix}\right.\Rightarrow\Delta ABC\sim\Delta HBA\left(g.g\right)\)

a: XétΔABC vuông tại A và ΔHBA vuông tại H có

góc B chung

Do đó: ΔABC\(\sim\)ΔHBA

Suy ra: BA/BH=BC/BA

hay \(BA^2=BH\cdot BC\)

b: Xét ΔBAD có MN//AD
nên MN/AD=BM/BA(1)

Xét ΔBCA có MH//AC
nên MH/AC=BM/BA(2)

Từ (1) và (2) suy ra MN/AD=MH/AC

hay MN/MH=AD/AC

a: Xét ΔABD và ΔACB có

góc ABD=góc ACB

góc BAD chung

Do đo: ΔABD đồng dạng với ΔACB

b: Ta có: ΔABD đồng dạng với ΔACB

nên AD/AB=AB/AC
=>AD/2=2/4=1/2

=>AD=1cm

=>DC=3cm

6 tháng 5 2020

Bạn còn cần giúp nx khôngg

Bài 1:Cho tam giác ABC vuông tại A có AC=12cm,BC=16cm.Trên cạnh BC lấy điểm H sao cho CH=9cm.Tia phân giác của góc ACH cắt AH tại M, tia phân giác góc BAH cắt BC tại N.Chứng minh a)\(\Delta CAB\sim\Delta CHA,AH\perp BC\) b)\(\dfrac{NH}{NB}=\dfrac{CH}{CA}\) , từ đó tính NH,NB? c) MN//AB d)MB cắt AN tại O,cắt đường thẳng qua N và song song với AH tại I.Chứng minh \(\dfrac{1}{MO}=\dfrac{1}{MI}+\dfrac{1}{MB}\) Bài 2: Cho hình chữ...
Đọc tiếp

Bài 1:Cho tam giác ABC vuông tại A có AC=12cm,BC=16cm.Trên cạnh BC lấy điểm H sao cho CH=9cm.Tia phân giác của góc ACH cắt AH tại M, tia phân giác góc BAH cắt BC tại N.Chứng minh

a)\(\Delta CAB\sim\Delta CHA,AH\perp BC\)

b)\(\dfrac{NH}{NB}=\dfrac{CH}{CA}\) , từ đó tính NH,NB?

c) MN//AB

d)MB cắt AN tại O,cắt đường thẳng qua N và song song với AH tại I.Chứng minh \(\dfrac{1}{MO}=\dfrac{1}{MI}+\dfrac{1}{MB}\)

Bài 2: Cho hình chữ nhật ABCD có AD<AB và \(AH\perp BD\).

a)Chứng minh \(\Delta AHB\sim\Delta ADC\)

b)Lấy \(M\in BH\)\(N\in DC\) sao cho \(\dfrac{BM}{BH}=\dfrac{CN}{CD}\) .Chứng minh \(\Delta ABM\sim\Delta ACN\)

c) Chứng minh \(AM\perp MN\)

Bài 3:

Cho hình thang MNPQ (MN//PQ) , góc QMN=góc QNP. MP cắt QN tại O.

a. CMR: \(\Delta MNQ\sim\Delta NQP\)

b. Biết MN=9, PQ=16.Tính NQ,NO,OQ và tỉ số diện tích của \(\Delta MNQ\)\(\Delta NQP\)

c. Tia phân giác góc MNQ cắt MQ tại A, tia phân giác góc NQP cắt NP tại P. CMR: AM.BP=AQ.BN=AQ.AQ

d.CMR:AB//MN

1

a: Xét ΔCAB và ΔCHA có

CA/CH=CB/CA

góc C chung

Do đó: ΔCAB đồng dạng với ΔCHA

SUy ra: góc CHA=90 độ

hay AH vuông góc với BC

b: Xét ΔHAB có AH là phân giác

nên NH/NB=HA/AB(1)

Xét ΔCAH có CM là phân giác

nên HM/MA=HC/AC(2)

Từ (1) và (2) suy ra NH/NB=HM/MA=CH/CA

c: Xét ΔHAB có HM/MA=HN/NB

nên MN//AB