Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔBAN và ΔBMN có
BA=BM
\(\widehat{ABN}=\widehat{MBN}\)
BN chung
Do đo: ΔBAN=ΔBMN
Suy ra: NA=NM và \(\widehat{BAN}=\widehat{BMN}=90^0\)
=>NM\(\perp\)BC
b: Ta có: ΔABC vuông tại A
mà AM là đường trung tuyến
nên MA=MB
=>ΔABM đều
=>\(\widehat{ABC}=60^0\)
A B C M D E K H N
a) Có: AB=AC
\(\Rightarrow\Delta ABC\) là tam giác cân tại A
\(\Rightarrow\widehat{ABC}=\widehat{ACB}\)
Mà \(\widehat{ABD}+\widehat{ABC}=180^o\) (kề bù)
\(\widehat{ACE}+\widehat{ACB}=180^o\)(kề bù)
\(\Rightarrow\widehat{ABD}=\widehat{ACE}\)
Xét \(\Delta ABD\) và \(\Delta ACE\) có:
\(AB=AC\left(gt\right)\)
\(\widehat{ABD}=\widehat{ACE}\left(cmt\right)\)
\(BD=CE\left(gt\right)\)
\(\Rightarrow\Delta ABD=\Delta ACE\left(c.g.c\right)\)
a)
Xét △ABD và △AID có:
B=I=90 độ
BAD=IAD(AD là tia phân giác)
AD chung
➩△ABD = △AID(ch-gn)
➩AB=AI (2 cạnh tương ứng)
xet tam giac aib va tam giacaic
ab=ac (gt)
ai:canh chung
ia=ib (gt)
do đó tam giác aib= tam giác aic
A B C D I K M 1 2
a)
Xét tam giác AMB và tam giác DMC có:
AM = DM (gt)
AMB = DMC (2 góc đối đỉnh)
MB = MC (M là trung điểm của BC)
=> Tam giác AMB = Tam giác DMC (c.g.c)
b)
=> ABM = DCM (2 góc tương ứng)
mà 2 góc này ở vị trí so le trong
=> AB // DC
c)
Xét tam giác IMA vuông tại I và tam giác KMD vuông tại K có:
IMA = KMD (2 góc đối đỉnh)
MA = MD (gt)
=> Tam giác IMA = Tam giác KMD (cạnh huyền - góc nhọn)
=> IM = KM (2 cạnh tương ứng)