\(\Delta ABC\) , D là trung điểm của BC . Xác định vị trí điểm G biết
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
30 tháng 9 2019

\(\overrightarrow{AG}=2\overrightarrow{GD}=2\left(\overrightarrow{GA}+\overrightarrow{AD}\right)=2\overrightarrow{GA}+2\overrightarrow{AD}\)

\(\Rightarrow3\overrightarrow{AG}=2\overrightarrow{AD}\Rightarrow\overrightarrow{AG}=\frac{2}{3}\overrightarrow{AD}\)

\(\Rightarrow G\) là trọng tâm tam giác ABC

1 tháng 11 2018

1) AG= 2GA+ 2 AD

AG+ 2AG= 2AD

3 AG= 2AD

AG= 2/3 AD

2) IA + 2 IA+ 2AB=0

3 IA= -2 AB

IA= -2/3 AB

14 tháng 11 2022

2: vecto IA+2 vecto IB=vecto 0

=>vecto IA=-2*vecto IB

=>I nằm giữa A và B và IA=2IB

NV
3 tháng 11 2019

\(\overrightarrow{AG}=2\overrightarrow{GD}\Rightarrow\overrightarrow{AG}=\frac{2}{3}\overrightarrow{AD}\Rightarrow G\) là trọng tâm tam giác ABC

Câu 2: 

Vì G là trọng tâm nên \(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow{0}\)

hay \(\overrightarrow{GC}=-\overrightarrow{a}-\overrightarrow{b}\)

\(\overrightarrow{BC}=\overrightarrow{BG}+\overrightarrow{GC}=-\overrightarrow{b}-\overrightarrow{a}-\overrightarrow{b}=-\overrightarrow{a}-2\overrightarrow{b}\)

=>m=-1; n=-2

AH
Akai Haruma
Giáo viên
28 tháng 6 2019

Lời giải:
a)

Vì $B,I,C$ thẳng hàng, $I$ nằm giữa $B$ và $C$ nên \(\overrightarrow{BI},\overrightarrow{IC}\) là 2 vecto cùng hướng

Mà $I$ là trung điểm của $BC$ nên \(|\overrightarrow{BI}|=|\overrightarrow{IC}|\)

Từ 2 điều trên suy ra \(\overrightarrow{BI}=\overrightarrow{IC}\)

b)

Theo tính chất trung tuyến- trọng tâm thì \(\overrightarrow{AG}=\frac{2}{3}\overrightarrow{AI}\)

\(\Leftrightarrow \overrightarrow{AG}=\frac{2}{3}(\overrightarrow{AG}+\overrightarrow{GI})\)

\(\Leftrightarrow \frac{1}{2}\overrightarrow{AG}=\overrightarrow{GI}=-\overrightarrow{IG}\)

\(\Leftrightarrow \overrightarrow{IG}=-\frac{1}{2}\overrightarrow{AG}(1)\)

$J$ là trung điểm của $BB'$ nên \(\overrightarrow{BJ}=\frac{1}{2}\overrightarrow{BB'}=-\frac{1}{2}\overrightarrow{B'B}(2)\)

Từ (1) và (2) kết hợp với \(\overrightarrow{B'B}=\overrightarrow{AG}\) suy ra \(\overrightarrow{IG}=\overrightarrow{BJ}\) (đpcm)

AH
Akai Haruma
Giáo viên
28 tháng 6 2019

Hình vẽ:
Bài 2. TỔNG VÀ HIỆU CỦA HAI VECTO

17 tháng 5 2017

\(\overrightarrow{v}=\overrightarrow{MA}+\overrightarrow{MB}-2\overrightarrow{MC}=\overrightarrow{MA}+\overrightarrow{MB}+2\overrightarrow{CM}\)
\(=\left(\overrightarrow{CM}+\overrightarrow{MA}\right)+\left(\overrightarrow{CM}+\overrightarrow{MB}\right)=\overrightarrow{CA}+\overrightarrow{CB}\) (Không phụ thuộc vào vị trí điểm M).
A B C I K
b) Dựng hình bình hành BCAD. Theo quy tắc hình bình hành:
\(\overrightarrow{CA}+\overrightarrow{CB}=\overrightarrow{CD}\).
Vậy \(\overrightarrow{CD}=\overrightarrow{v}\).

6 tháng 8 2017

\(\overrightarrow{v}=\overrightarrow{MA}+\overrightarrow{MB}-2\overrightarrow{MC}\)

\(=2\overrightarrow{ME}-2\overrightarrow{MC}\) (E là trung điểm cạnh AB)

\(=\left(\overrightarrow{ME}-MC\right)=2\overrightarrow{CE}\)

vậy \(\overrightarrow{v}\) không phụ thuộc vị trí của điểm M

\(\overrightarrow{CD}=\overrightarrow{v}=2\overrightarrow{CE}\) thì E là trung điểm của CD

\(\Rightarrow\) ta dựng được điểm D

a: \(\overrightarrow{AG}=\dfrac{2}{3}\overrightarrow{AM}=\dfrac{2}{3}\cdot\dfrac{1}{2}\cdot\left(\overrightarrow{AB}+\overrightarrow{AC}\right)=\dfrac{1}{3}\cdot\overrightarrow{AB}+\dfrac{1}{3}\cdot\overrightarrow{AC}\)

 

6 tháng 10 2016

Có: \(3\overrightarrow{MA}+4\overrightarrow{MB}=0\Leftrightarrow3\overrightarrow{MA}+4\overrightarrow{MB}+3\overrightarrow{MC}=3\overrightarrow{MC}\)
                                    \(\Leftrightarrow3\overrightarrow{MG}+\overrightarrow{MB}=3\overrightarrow{MC}\)
                                    \(\Leftrightarrow3\overrightarrow{MG}+\overrightarrow{MC}+\overrightarrow{CB}=3\overrightarrow{MC}\)
                                    \(\Leftrightarrow3\overrightarrow{MG}+2\overrightarrow{CM}-2\overrightarrow{CN}=0\)
                                    \(\Leftrightarrow3\overrightarrow{MG}+2\overrightarrow{NM}=0\)
Vậy 3 điểm M, N, G thẳng hàng.
b, theo như mình biết thì không có thương hai vec tơ.