Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{a^3\left(b+c\right)}+\frac{1}{b^3\left(c+a\right)}+\frac{1}{c^3\left(a+b\right)}\)
\(=\frac{b^2c^2}{ab+ca}+\frac{c^2a^2}{bc+ab}+\frac{a^2b^2}{ca+bc}\)
\(\ge\frac{\left(ab+bc+ca\right)^2}{2\left(ab+bc+ca\right)}=\frac{1}{2}\left(ab+bc+ca\right)\)
Áp dụng BĐT Cauchy-Schwarz dạng Engel(hoặc áp dụng BĐT quen thuộc: \(\frac{p^2}{m}+\frac{q^2}{n}\ge\frac{\left(p+q\right)^2}{m+n}\) 2 lần),ta có:
\(VT=\frac{\left(\frac{1}{a^2}\right)}{a\left(b+c\right)}+\frac{\left(\frac{1}{b^2}\right)}{b\left(c+a\right)}+\frac{\left(\frac{1}{c^2}\right)}{c\left(a+b\right)}\)
\(\ge\frac{\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2}{2\left(ab+bc+ca\right)}=\frac{\left(ab+bc+ca\right)^2}{2\left(ab+bc+ca\right)}\) (thay abc = 1 vào)
\(=\frac{ab+bc+ca}{2}=\frac{1}{2}\left(ab+bc+ca\right)^{\left(đpcm\right)}\)
Lời giải:
Phản chứng. Giả sử cả 3 bất đẳng thức trên đều đúng.
Khi đó:
\(a(2-b)b(2-c)c(2-a)>1.1.1=1\)
\(\Leftrightarrow a(2-a)b(2-b)c(2-c)>1(*)\)
Áp dụng BĐT AM-GM cho 2 số dương $a,2-a$ ta có:
\(a(2-a)\leq \left(\frac{a+(2-a)}{2}\right)^2=1\)
Tương tự:
\(b(2-b)\leq \left(\frac{b+(2-b)}{2}\right)^2=1\)
\(c(2-c)\leq \left(\frac{c+(2-c)}{2}\right)^2=1\)
Nhân theo vế:
\(a(2-a)b(2-b)c(2-c)\leq 1\) (trái với $(*)$)
Như vậy suy ra điều giả sử là sai. Tức là ít nhất một trong 3 BĐT đã cho là sai.
Để xét xem một điểm với tọa độ cho trước thuộc đồ thị của hàm số \(y=f\left(x\right)\) hay không ta chỉ cần tính giá trị của hàm số tại hoành độ của điểm đã cho. Nếu giá trị của hàm số tại đó bằng tung độ của điểm đang xét thì điểm đó thuộc đồ thị, còn nếu ngược lại thì điểm đang xét không thuộc đồ thị
a) Với điểm \(A\left(-1;3\right)\). Ta có :
\(\left|-\left(-1\right)-3\right|+\left|2.\left(-1\right)+1\right|+\left|-1+1\right|=2+1+0=3\)
bằng tung độ của điểm A, do đó điểm A thuộc đồ thị
b) Điểm B không thuộc đồ thị
c) Điểm C không thuộc đồ thị
d) Điểm D không thuộc đồ thị
a) \(\left(a;b\right)\cap\left(c;d\right)=\varnothing\)
b) (a; c] \ (b; d) = [b; c)
c) (a; d) \ (b; c) = (a; b] \(\cup\) [c; d)
d) (b;d) \ (a; c) = [c; d)
a) \(\varnothing\)
b) \(\left(a;c\right)\)\\(\left\{b\right\}\)
c) (\(a;b\)]
d) \(\left(a,b\right)\)