Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x=\sqrt{\sqrt{3}-\sqrt{\left(\sqrt{3}-1\right)^2}}=\sqrt{\sqrt{3}-\sqrt{3}+1}=1\)
Để \(P\left(x\right)=0\) có nghiệm \(x=1\Rightarrow1-2m+m=0\Rightarrow m=1\)
BT1.
a,Ta có :\(A^2=-5x^2+10x+11\)
\(=-5\left(x^2-2x+1\right)+16\)
\(=-5\left(x-1\right)^2+16\)
Vì \(\left(x-1\right)^2\ge0\Rightarrow-5\left(x-1\right)^2\le0\)
\(\Rightarrow A^2\le16\Rightarrow A\le4\)
Dấu ''='' xảy ra \(\Leftrightarrow x=1\)
Vậy Max A = 4 \(\Leftrightarrow x=1\)
Câu b,c tương tự nhé.
1: Ta có: \(\sqrt{x^2-x+\frac{1}{4}}\)
\(=\sqrt{x^2-2\cdot x\cdot\frac{1}{2}+\left(\frac{1}{2}\right)^2}\)
\(=\sqrt{\left(x-\frac{1}{2}\right)^2}\)
\(=\left|x-\frac{1}{2}\right|\)
2: Ta có: \(\sqrt{x^2}+\sqrt{x^6}\)
\(=\sqrt{x^2}\cdot1+\sqrt{x^2}\cdot\sqrt{x^4}\)
\(=\sqrt{x^2}\cdot\left(1+\sqrt{x^4}\right)\)
\(=\left|x\right|\cdot\left(1+x^2\right)\)
3: Ta có: \(C=\sqrt{3-2\sqrt{2}}-\sqrt{6-4\sqrt{2}}\)
\(=\sqrt{2-2\cdot\sqrt{2}\cdot1+1}-\sqrt{4-2\cdot2\cdot\sqrt{2}+2}\)
\(=\sqrt{\left(\sqrt{2}-1\right)^2}-\sqrt{\left(2-\sqrt{2}\right)^2}\)
\(=\left|\sqrt{2}-1\right|-\left|2-\sqrt{2}\right|\)
\(=\sqrt{2}-1-2+\sqrt{2}\)
\(=2\sqrt{2}-3\)
\(1.\)
\(x+6\sqrt{x}+8\\ =\sqrt{x}^2+2\sqrt{x}.3+9-1\\ =\left(\sqrt{x}+3\right)^2-1\\ =\left(\sqrt{x}+2\right)\left(\sqrt{x}+4\right)\)
\(2.\)
\(x-2\sqrt{x}-3\\ =\sqrt{x}^2-2\sqrt{x}+1-4\\ =\left(\sqrt{x}-1\right)^2-2^2\\ =\left(\sqrt{x}-3\right)\left(\sqrt{x}+1\right)\)
\(4.\)
\(x^2-2\sqrt{2}x+2\\ =\left(x-\sqrt{2}\right)^2\)
\(5.\)
\(x^2+2\sqrt{13}x+13=\left(x+\sqrt{13}\right)^2\)
Ta có:
\(a=\sqrt{3}-\sqrt{3-\sqrt{13-2\sqrt{12}}}=\sqrt{3}-\sqrt{3-\sqrt{\left(\sqrt{12}-1\right)^2}}\)
\(=\sqrt{3}-\sqrt{3-\sqrt{12}+1}=\sqrt{3}-\sqrt{4-2\sqrt{3}}=\sqrt{3}-\sqrt{\left(\sqrt{3}-1\right)^2}=\sqrt{3}-\sqrt{3}+1\)
nên \(a=1\)
Vì \(a\) là nghiệm của đa thức \(P\left(x\right)\) nên nhất định rằng \(P\left(x\right)\) sẽ chứa một nhân tử chung có dạng \(a-1\)
Ta biểu diễn lại đa thức \(P\left(x\right)\) như sau:
\(P\left(x\right)=x^9-17x^8+m=\left(a-1\right)A\)
\(\Rightarrow\) \(P\left(1\right)=1^9-17.1^8+m=\left(1-1\right)A=0\)
Hay nói cách khác, ta suy ra được \(m=16\)