\(ax^2+bx+c\). Biết rằng các giá trị của đa thức tại x=0, x=1, x=-1 đ...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 5 2015

vì giá trị của đa thức tại x=0; x=1; x=-1 là các số nguyên nên f(0); f(1); f(-1) là các số nguyên

=>f(0)= a.0^2+b.0+c=c là số nguyên

    f(1)=a.1^2+b.1+c=a+b+c là số nguyên, mà c là số nguyên nên a+b cũng là số nguyên

    f(-1)= a.(-1)^2+b.(-1)+c=a-b+c là số nguyên, mà c là số nguyên nên a-b là số nguyên

    ta có a-b; b+a là số nguyên (chứng minh ở trên)

=> (a-b)+(b+a)=a-b+b+a=a+a=2a là một số nguyên

vậy 2a;a+b;c là các số nguyên

3 tháng 5 2019

giúp mình cái mai mình ktr rồi

3 tháng 5 2019

Bạn tham khảo câu trả lời của anh ali tại đây:

Câu hỏi của Dương Thúy Hiền - Toán lớp 8 - Học toán với OnlineMath

18 tháng 5 2016

f(x)=ax2+bx+c

Ta có:f(0)=a.02+b.0+c=c

Mà f(0) \(\in\) Z(theo đề)=>c \(\in\) Z

f(1)=a.12+b.1+c=a+b+c

Mà f(1) \(\in\) Z(theo đề)=>a+b+c \(\in\) Z

Vì c \(\in\) Z => a+b \(\in\) Z (1)

f(-1)=a.(-1)2+b.(-1)+c=a-b+c

Mà f(-1) \(\in\) Z => a-b+c \(\in\) Z

Vì c \(\in\) Z => a-b \(\in\) Z  (2)

Từ (1) và (2)=> \(\left(a+b\right)+\left(a-b\right)\in Z\Rightarrow2a\in Z\)

Vậy c,a+b,2a đều là những số nguyên (đpcm)

18 tháng 5 2016

nguyễn thanh tùng vs Thiên ngoại phi tiên:các người copy trắng trợn vậy mà ko biết xấu hổ hả?

6 tháng 4 2018

Làm hơi dài dòng tẹo nhé
f(0)=d là số lẻ
f(1)=a+b+c+d là số lẻ => a+b+c là số chẵn
Giả sử nghiệm x chẵn => f(x) lẻ khác 0 => loại
Giả sử nghiệm x lẻ
=> Tính chẵn lẻ của ax3 phụ thuộc vào a
     Tính chẵn lẻ của bx2 phụ thuộc vào b
     Tính chẵn lẻ của cx phụ thuộc vào c
     d là số lẻ 
Mà a+b+c là số chẵn=> ax3+bx2+cx là số chẵn => ax3+bx2+cx+d là số lẻ khác 0
Vậy f(x) không thể có nghiệm nguyên 
Hơi khó hỉu chút nhé ahihi
 

4 tháng 5 2018

Sai rồi bạn ơi

19 tháng 3 2018

) f(0) = c; f(0) nguyên => c nguyên     (*)
f(1) = a+ b + c ; f(1) nguyên => a+ b + c nguyên     (**)
f(2) = 4a + 2b + c ; f(2) nguyên => 4a + 2b + c nguyên    (***)
Từ (*)(**)(***) => a + b và 4a + 2b nguyên
4a + 2b = 2a + 2.(a + b) có giá trị  nguyên  mà 2(a+ b) nguyên do a+ b nguyên
nên 2a nguyên => 4a có giá trị nguyên mà 4a + 2b nguyên do đó 2b có giá trị nguyên

:3

25 tháng 3 2018

Có \(f\left(0\right);f\left(1\right);f\left(2\right)\)\(\in Z\Rightarrow\hept{\begin{cases}f\left(0\right)=c\in Z\\f\left(1\right)=a+b+c\in z\\f\left(2\right)=4a+2b+c\in z\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}a+b\in z\\4a+2b\in z\end{cases}\Rightarrow\hept{\begin{cases}2a+2b\in z\\4a+2b\in z\end{cases}}\Rightarrow2a\in z;}2b\in z\)

\(\RightarrowĐPCM\)

27 tháng 4 2016

Ta có: \(f\left(x\right)=ax^2+bx+c\)

\(f\left(0\right)=a.0^2+b.0+c=c\)

Mà theo đề: \(f\left(0\right)\in Z\Rightarrow c\in Z\)

\(f\left(1\right)=a.1^2+b.1+c=a+b+c\)

Mà theo đề: \(f\left(1\right)\in Z\Rightarrow a+b+c\in Z\)

Lại có: \(c\in Z\Rightarrow a+b\in Z\left(1\right)\)

\(f\left(-1\right)=a.\left(-1\right)^2+b.\left(-1\right)+c=a-b+c\)

Mà theo đề: \(f\left(-1\right)\in Z\Rightarrow a-b+c\in Z\)

Lại có:\(c\in Z\Rightarrow a-b\in Z\left(2\right)\)

Lấy (1)+(2),vế theo vế:

\(\Rightarrow\left(a+b\right)+\left(a-b\right)\in Z\Rightarrow2a\in Z\)

Vậy 2a;a+b;c là những số nguyên  (đpcm)

2 tháng 5 2016

Ta có: f(0) = a.0 + b.0 + c = 0 + c = c

Mà f(0) là số nguyên nên c là số nguyên  (1)

         f(1) = a.1^2 + b.1 + c = a + b + c

Vì c là số nguyên nên a + b là số nguyên  (2)

        f(-1) = a.(-1)^2 + b.(-1) + c = a - b + c

Vì c là số nguyên nên a - b là số nguyên  (3)

Mà tổng hai số nguyên là 1 số nguyên nên (a+b) + (a-b) cũng là số nguyên

hay 2a là số nguyên (4)

Từ (1), (2) và (4) ta suy ra: 2a, a+b, c đều là số nguyên

2 tháng 2 2022

Cho `x=0`

`=> f(0) = a.0^2 + b.0 + c`

`=> f(0) = c`

Mà tại `x=0` thì `f(x)` là số nguyên do đó `c` là số nguyên

Cho `x=1`

`=> f(1) = a.1^2 + b.1+c`

`=> f(1)= a+b+c`  (1) 

Mà tại `x=1` thì `f(x)` là số nguyên do đó a+b+c là số nguyên, mặt khác c là số nguyên nên `a+b` là số nguyên

Cho `x= -1`

`=> f(-1) = a.(-1)^2 + b.(-1)+c`

`=> f(-1) = a -b+c` (2)

Từ `(1)` và `(2)`

`=>f(1) + f(-1) =  a+b+c + a-b+c`

`= 2a + 2c` là số nguyên do `f(1)` và `f(-1)` là những số nguyên

Mà `c` là số nguyên nên `2c` là số nguyên

`=> 2a` là số nguyên

Vậy `2a ; a+b ,c` là những số nguyên