\(\left(u_n\right)\) với \(u_1=2\) và 
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 9 2023

\(Bài.1:\\ u_7=u_1+6d\\ \Leftrightarrow-10=2+6d\\ \Rightarrow6d=-10-2=-12\\ Vậy:d=\dfrac{-12}{6}=-2\\ Bài.2:S_{10}=10.u_1+\dfrac{10.\left(10-1\right)}{2}.d=10.1+\dfrac{10.9}{2}.2=100\\ Bài.3:S_{2019}=2019.u_1+\dfrac{2019.\left(2019-1\right)}{2}.d\\ =2019.3+\dfrac{2019.2018}{2}.2=2019.2021=4080399\)

16 tháng 9 2023

Bài 4:

\(d=u_2=u_1=5-2=3\)

Bài 5:

\(u_n=u_1+\left(n-1\right)d\\ \Leftrightarrow2018=2+\left(n-1\right).9\\ \Leftrightarrow2+9n-9=2018\\ \Leftrightarrow9n=2018-2+9\\ \Leftrightarrow9n=2025\\ \Leftrightarrow n=\dfrac{2025}{9}=225\)

Vậy: 2018 là số hạng thứ 225 của dãy

Bài 6:

Đề chưa có yêu cầu

24 tháng 5 2017

Gọi số hạng đầu và công sai của cấp số cộng lần lượt là: u1d.
Ta có:
{u1+2u5=0S4=14{u1+2.(u1+4d)=0[2u1+3d].42=14{3u1+8d=02u1+3d=7{u1=8d=3.

24 tháng 5 2017

b) Gọi số hạng đầu và công sai của cấp số cộng làn lượt là \(u_1\) d. Ta có:
\(\left\{{}\begin{matrix}u_1+3d=10\\u_1+6d=19\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}u_1=1\\d=3\end{matrix}\right.\).
c) Gọi số hạng đầu và công sai của cấp số cộng lần lượt là \(u_1\) và d. Ta có:
\(\left\{{}\begin{matrix}u_1+u_1+4d-u_1-2d=10\\u_1+u_1+5d=7\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}u_1+2d=10\\2u_1+5d=7\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}u_1=36\\d=-13\end{matrix}\right.\).
d) Gọi số hạng đầu và công sai của cấp số cộng lần lượt là \(u_1\) và d. Ta có:
\(\left\{{}\begin{matrix}u_1+6d-\left(u_1+2d\right)=8\\\left(u_1+d\right)\left(u_1+6d\right)=75\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}4d=8\\\left(u_1+d\right)\left(u_1+6d\right)=75\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}d=2\\\left(u_1+2\right)\left(u_1+12\right)=75\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}d=2\\u^2_1+14u_1-51=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}d=\\\left[{}\begin{matrix}u_1=3\\u_1=-17\end{matrix}\right.\end{matrix}\right.\)
Vậy có hai cấp số cộng thỏa mãn là: \(\left\{{}\begin{matrix}d=2\\u_1=3\end{matrix}\right.\)\(\left\{{}\begin{matrix}d=2\\u_1=-17\end{matrix}\right.\).

9 tháng 4 2017

a) Ta có:

{5u1+10u=0S4=14{5u1+10u=0S4=14

⇔{5u1+10(u1+4d)=04(2u1+3d)2=14⇔{3u1+8d=02u1+3d=7⇔{u1=8d=−3⇔{5u1+10(u1+4d)=04(2u1+3d)2=14⇔{3u1+8d=02u1+3d=7⇔{u1=8d=−3

Vậy số hạng đầu u1 = 8, công sai d = -3

b) Ta có:

{u7+u15=60u24+u212=1170⇔{(u1+6d)+(u1+14d)=60(1)(u1+3d)2+(u1+11d)2=1170(2){u7+u15=60u42+u122=1170⇔{(u1+6d)+(u1+14d)=60(1)(u1+3d)2+(u1+11d)2=1170(2)

(1) ⇔ 2u1 + 20d = 60 ⇔ u1 = 30 – 10d thế vào (2)

(2) ⇔[(30 – 10D) + 3d]2 + [(30 – 10d) + 11d]2 = 1170

⇔ (30 – 7d)2 + (30 + d)2 = 1170

⇔900 – 420d + 49d2 + 900 + 60d + d2 = 1170

⇔ 50d2 – 360d + 630 = 0

⇔[d=3⇒u1=0d=215⇒u1=−12⇔[d=3⇒u1=0d=215⇒u1=−12

Vậy

{u1=0d=3{u1=0d=3

hay

{u1=−12d=215



19 tháng 5 2017

Dãy số - cấp số cộng và cấp số nhân

9 tháng 4 2017

a) Từ hệ thức đã cho ta có:

hay

.Giải hệ này tìm u1 và d. Đáp số u1 = 16, d = -3.

b) Từ hệ đã cho ta có:

hay

Giải hệ này để tìm u1 và d. Đáp số u1 = 3 và d = 2 hoặc u1 = -17 và d = 2

u1 = 3 và d = 2 hoặc u1 = -17 và d = 2.

19 tháng 5 2017

Dãy số - cấp số cộng và cấp số nhân

19 tháng 5 2017

Dãy số - cấp số cộng và cấp số nhân

24 tháng 5 2017

Gọi số hạng đầu và công bội của cấp số nhân là: \(u_1;q\).
a) Theo tính chất của cấp số nhân ta có:
\(\left\{{}\begin{matrix}u_1q^4-u_1=15\\u_1q^3-u_1q=6\end{matrix}\right.\)\(\Rightarrow\dfrac{u_1\left(q^4-1\right)}{u_1\left(q^3-q\right)}=\dfrac{15}{6}\)\(\Leftrightarrow\dfrac{\left(q^2-1\right)\left(q^2+1\right)}{q\left(q^2-1\right)}=\dfrac{15}{6}\)\(\Leftrightarrow\dfrac{q^2+1}{q}=\dfrac{15}{6}\)
\(\Leftrightarrow6\left(q^2+1\right)=15q\)\(\Leftrightarrow6q^2-15q+6=0\)\(\Leftrightarrow\left[{}\begin{matrix}q=2\\q=\dfrac{1}{2}\end{matrix}\right.\).
Với \(q=2\).
Suy ra: \(u_1\left(q^4-q\right)=15\Rightarrow u_1=\dfrac{15}{q^4-q}=\dfrac{15}{14}\).
Với \(q=\dfrac{1}{2}\)
Suy ra \(u_1=\dfrac{15}{q^4-q}=\dfrac{-240}{7}\).

19 tháng 5 2017

Dãy số - cấp số cộng và cấp số nhân

Dãy số - cấp số cộng và cấp số nhân

20 tháng 12 2019
https://i.imgur.com/WVXFRAn.jpg
9 tháng 4 2017

a) Áp dụng công thức tính số hạng tổng quát, ta có:

u3 = 3 = u1.q2 và u5 = 27 = u1.q4.

Vì 27 = (u1q2).q2 = 3.q2 nên q2 = 9 hay q = ±3.

Thay q2 = 9 vào công thức chứa u3, ta có u1 = .

- Nếu q = 3, ta có cấp số nhân: , 1, 3, 9, 27.

- Nếu q = -3, ta có cáp số nhân: , -1, 3, -9, 27.

b) Áp dụng công thức tính số hạng tỏng quát từ giả thiết, ta có:

hay

Từ hệ trên ta được: 50.q = 25 => q = .

Và u1 = .

Ta có cấp số nhân .