\(x=\frac{a}{b}\) ; \(y=\frac{c}{...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 8 2017

Ta có : z = \(\frac{m}{n}\)\(\frac{\frac{a+c}{2}}{\frac{b+d}{2}}=\frac{a+c}{b+d}=\frac{2m}{2n}\)

Nếu x < y thì \(\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)\(\Rightarrow\frac{a}{b}< \frac{2m}{2n}< \frac{c}{d}\)

\(\Rightarrow\frac{a}{b}< \frac{m}{n}< \frac{c}{d}\)\(\Rightarrow x< z< y\)

Nếu x > y thì : \(\frac{a}{b}>\frac{a+c}{b+d}>\frac{c}{d}\)\(\Rightarrow\frac{a}{b}>\frac{2m}{2n}>\frac{c}{d}\)

\(\Rightarrow\frac{a}{b}>\frac{m}{n}>\frac{c}{d}\)\(\Rightarrow x>z>y\)

Vậy ...

2 tháng 7 2016

Nếu x < y thì \(\frac{a}{b}\)  < \(\frac{a+c}{b+d}\)  < \(\frac{c}{d}\)  hay \(\frac{a}{b}\)  < \(\frac{2m}{2n}\)   < \(\frac{c}{d}\)    suy ra \(\frac{a}{b}\)  < \(\frac{m}{n}\)  < \(\frac{c}{d}\)   , do đó x < z < y 

tương tự nếu x > y thì x > z > y

2 tháng 7 2016

^^!!!!!!!hihi

25 tháng 6 2017

em chịu chị ơi

7 tháng 6 2016

Z = a+c/2 :b+d/2 =a+c/2 ·2/b+d =a+c/b+d 

X =a/b = a(b+d)/b(b+d) =ab+ad/b2+bd 

Z=  a+c/b+d =(a+c).b/(b+d).b =ab+ac/b2+bd 

(+) Nếu a dương ; d< c => ad < ac => ab +ad < ab +ac => X < Z

(+) Nếu a âm  ; d< c => ad > ac => ab + ad > ab + ac => X>Z 

(+) nếu a dương ;  d > c => ad > ac => ab + ad > ab + ac => X > Z

(+) ..................................... ........................................... Z >X

7 tháng 6 2016

Z = a+c/:b+d/=a+c/·2/b+d =a+c/b+d 

X =a/b = a(b+d)/b(b+d=ab+ad/b2+bd 

Z=  a+c/b+d =(a+c).b/(b+d).b =ab+ac/b2+bd 

(+) Nếu a dương ; d< c => ad < ac => ab +ad < ab +ac => X < Z

(+) Nếu a âm  ; d< c => ad > ac => ab + ad > ab + ac => X>Z 

(+) nếu a dương ;  d > c => ad > ac => ab + ad > ab + ac => X > Z

(+) ..................................... ........................................... Z >X

7 tháng 7 2017

1.

Ta có: \(\frac{a}{b}< \frac{c}{d}\Leftrightarrow ad< bc\Leftrightarrow ab+ad< ad+bc\Leftrightarrow a\left(b+d\right)< b\left(a+c\right)\Leftrightarrow\frac{a}{b}< \frac{a+c}{b+d}\)  (1)

Lại có: \(\frac{a}{b}< \frac{c}{d}\Leftrightarrow bc>ad\Leftrightarrow bc+cd>ad+cd\Leftrightarrow c\left(b+d\right)>d\left(a+c\right)\Leftrightarrow\frac{c}{d}>\frac{a+c}{b+d}\)  (2)

Từ (1) và (2) suy ra \(\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)

2.

Ta có: a(b + n) = ab + an (1)

           b(a + n) = ab + bn (2)

Trường hợp 1: nếu a < b mà n > 0 thì an < bn (3)

Từ (1),(2),(3) suy ra a(b + n) < b(a + n) => \(\frac{a}{n}< \frac{a+n}{b+n}\)

Trường hợp 2: nếu a > b mà n > 0 thì an > bn (4)

Từ (1),(2),(4) suy ra a(b + n) > b(a + n) => \(\frac{a}{b}>\frac{a+n}{b+n}\)

Trường hợp 3: nếu a = b thì \(\frac{a}{b}=\frac{a+n}{b+n}=1\)