\(C=\frac{3x+\sqrt{9x}-3}{x+\sqrt{x}-2}-\frac{\sqrt{x}+\:1}{\sqrt{x}+\:2...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 5 2017

moi tay

8 tháng 6 2017

giải giùm mình bài 5 với

17 tháng 10 2019

\(P=\left(\frac{3x+3}{x-9}-\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{3-\sqrt{x}}\right):\left(\frac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right).ĐKXĐ:x\ge0,x\ne9\)

\(=\left(\frac{3x+3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}-\frac{2\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}-\frac{\sqrt{x}\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\right):\left(\frac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\)

\(=\left(\frac{3x+3-2x+6\sqrt{x}-x-3\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\right):\left(\frac{2\sqrt{x}-2-\sqrt{x}+3}{\sqrt{x}-3}\right)\)

\(=\frac{3\sqrt{x}+3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}:\frac{\sqrt{x}+1}{\sqrt{x}-3}\)

\(=\frac{3\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}.\frac{\sqrt{x}-3}{\sqrt{x}+1}\)

\(=\frac{3}{\sqrt{x}+3}\)

17 tháng 10 2019

\(b,x=20-6\sqrt{11}=11-2.3\sqrt{11}+9\)

\(=\left(\sqrt{11}-3\right)^2\)

\(P=\frac{3}{\sqrt{x}+3}=\frac{3}{\sqrt{\left(\sqrt{11}-3\right)^2}+3}=\frac{3}{\sqrt{11}-3+3}=\frac{3\sqrt{11}}{11}\)

\(c,P>\frac{1}{2}\Rightarrow\frac{3}{\sqrt{x}+3}>\frac{1}{2}\)

\(\Leftrightarrow\frac{3}{\sqrt{x}+3}-\frac{1}{2}>0\)

\(\Leftrightarrow\frac{6-\sqrt{x}-3}{2\left(\sqrt{x}+3\right)}>0\)

\(\Leftrightarrow\frac{6-\sqrt{x}-3}{2\left(\sqrt{x}+3\right)}>0\)\(\Leftrightarrow\frac{3-\sqrt{x}}{2\left(\sqrt{x}+3\right)}>0\)

vì \(2\left(\sqrt{x}+3\right)>0\) (nếu x=0 =>pt vô nghiệm)

\(\Rightarrow3-\sqrt{x}>0\Rightarrow\sqrt{x}< 3\Rightarrow x< 9\)

Kết hợp ĐKXĐ: \(0< x< 9\)

6 tháng 9 2019

mọi ng ơi mk viết thiếu dấu ngoặc nha.thiếu ngoặc lownns nha. đóng ngoắc ở trước dấu chia

1. Cho biểu thức A = \(\left(\frac{x-\sqrt{x}}{\sqrt{x}-1}+1\right):\left(\frac{x+2\sqrt{x}}{\sqrt{x}+2}-1\right)\)a) Rút gọn biểu thức Ab) Tính giá trị của A khi x=9c) Tìm x để A=5d) Tìm x để A<1e) Tìm giá trị nguyên của x để A nhận giá trị nguyên2. Cho hai biểu thức P = \(\frac{\sqrt{x}+1}{\sqrt{x}-1}\) và A = \(\left(\frac{x-2}{x+2\sqrt{x}}+\frac{1}{\sqrt{x}+2}\right).\frac{\sqrt{x}+1}{\sqrt{x}-1}\)a) Tính giá trị biểu thức P khi x...
Đọc tiếp

1. Cho biểu thức A = \(\left(\frac{x-\sqrt{x}}{\sqrt{x}-1}+1\right):\left(\frac{x+2\sqrt{x}}{\sqrt{x}+2}-1\right)\)

a) Rút gọn biểu thức A

b) Tính giá trị của A khi x=9

c) Tìm x để A=5

d) Tìm x để A<1

e) Tìm giá trị nguyên của x để A nhận giá trị nguyên

2. Cho hai biểu thức P = \(\frac{\sqrt{x}+1}{\sqrt{x}-1}\) và A = \(\left(\frac{x-2}{x+2\sqrt{x}}+\frac{1}{\sqrt{x}+2}\right).\frac{\sqrt{x}+1}{\sqrt{x}-1}\)

a) Tính giá trị biểu thức P khi x = \(\frac{1}{4}\)

b) Rút gọn biểu thức A

c) So sánh giá trị biểu thức A với 1

d) Tìm giá trị của x để \(\frac{P}{A}\left(x-1\right)=0\)

 

1. Cho biểu thức A = \(\left(\frac{x-\sqrt{x}}{\sqrt{x}-1}+1\right):\left(\frac{x+2\sqrt{x}}{\sqrt{x}+2}-1\right)\)

a) Rút gọn biểu thức A

b) Tính giá trị của A khi x=9

c) Tìm x để A=5

d) Tìm x để A<1

e) Tìm giá trị nguyên của x để A nhận giá trị nguyên

2. Cho hai biểu thức P = \(\frac{\sqrt{x}+1}{\sqrt{x}-1}\) và A = \(\left(\frac{x-2}{x+2\sqrt{x}}+\frac{1}{\sqrt{x}+2}\right).\frac{\sqrt{x}+1}{\sqrt{x}-1}\)

a) Tính giá trị biểu thức P khi x = \(\frac{1}{4}\)

b) Rút gọn biểu thức A

c) So sánh giá trị biểu thức A với 1

d) Tìm giá trị của x để \(\frac{P}{A}\left(x-1\right)=0\)

 

 

0
15 tháng 8 2020

a) ĐKXĐ: \(\hept{\begin{cases}x-9\ne0\\\sqrt{x}\ge0\\\sqrt{x}\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ne9\\x\ge0\\x\ne0\end{cases}\Leftrightarrow}\hept{\begin{cases}x\ne9\\x>0\end{cases}}}\)

\(A=\left(\frac{x+3}{x-9}+\frac{1}{\sqrt{x}+3}\right):\frac{\sqrt{x}}{\sqrt{x}-3}\)

\(\Leftrightarrow A=\left(\frac{x+3}{x-9}+\frac{\sqrt{x}-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\right).\frac{\sqrt{x}-3}{\sqrt{x}}\)

\(\Leftrightarrow A=\left(\frac{x+3}{x-9}+\frac{\sqrt{x}-3}{x-9}\right).\frac{\sqrt{x}-3}{\sqrt{x}}\)

\(\Leftrightarrow A=\frac{x+\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}.\frac{\sqrt{x}-3}{\sqrt{x}}\)

\(\Leftrightarrow A=\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}+3}.\frac{1}{\sqrt{x}}=\frac{\sqrt{x}+1}{\sqrt{x}+3}=\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}{x-9}\)

b) \(x=\sqrt{6+4\sqrt{2}}-\sqrt{3+2\sqrt{2}}\)

\(\Leftrightarrow x=\sqrt{4+4\sqrt{2}+2}-\sqrt{2+2\sqrt{2}+1}\)

\(\Leftrightarrow x=\sqrt{\left(2+\sqrt{2}\right)^2}-\sqrt{\left(\sqrt{2}+1\right)^2}\)

\(\Leftrightarrow x=\left|2+\sqrt{2}\right|-\left|\sqrt{2}+1\right|\)

\(\Leftrightarrow x=2+\sqrt{2}-\sqrt{2}-1=1\left(TM\right)\)

Vậy với x= 1 thì giá trị của biểu thức \(A=\frac{\left(1+1\right)\left(1-3\right)}{1-9}=\frac{2.\left(-2\right)}{-8}=\frac{-4}{-8}=\frac{1}{2}\)

c)

Ta có :

\(\frac{x-9}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}=\frac{\sqrt{x}+3}{\sqrt{x}+1}=1+\frac{2}{\sqrt{x}+1}\)

+)  \(\frac{1}{A}\)nguyên 

\(\Leftrightarrow1+\frac{2}{\sqrt{x}+1}\)nguyên

\(\Leftrightarrow\sqrt{x}+1\inƯ\left(2\right)\)

\(\Leftrightarrow x=1\)

Vậy ..............

13 tháng 5 2021

1,

\(A=\left(\frac{a\sqrt{a}-1}{a-\sqrt{a}}-\frac{a\sqrt{a}+1}{a+\sqrt{a}}\right):\frac{a+2}{a-2}\left(đk:a\ne0;1;2;a\ge0\right)\)

\(=\frac{\left(a\sqrt{a}-1\right)\left(a+\sqrt{a}\right)-\left(a\sqrt{a}+1\right)\left(a-\sqrt{a}\right)}{a^2-a}.\frac{a-2}{a+2}\)

\(=\frac{a^2\sqrt{a}+a^2-a-\sqrt{a}-\left(a^2\sqrt{a}-a^2+a-\sqrt{a}\right)}{a\left(a-1\right)}.\frac{a-2}{a+2}\)

\(=\frac{2a\left(a-1\right)\left(a-2\right)}{a\left(a-1\right)\left(a+2\right)}=\frac{2\left(a-2\right)}{a+2}\)

Để \(A=1\)\(=>\frac{2a-4}{a+2}=1< =>2a-4-a-2=0< =>a=6\)

14 tháng 5 2021

2, 

a, Điều kiện xác định của phương trình là \(x\ne4;x\ge0\)

b, Ta có : \(B=\frac{2\sqrt{x}}{x-4}+\frac{1}{\sqrt{x}-2}-\frac{1}{\sqrt{x}+2}\)

\(=\frac{2\sqrt{x}}{x-4}+\frac{\sqrt{x}+2}{x-4}-\frac{\sqrt{x}-2}{x-4}\)

\(=\frac{2\sqrt{x}+2+2}{x-4}=\frac{2\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}=\frac{2}{\sqrt{x}-2}\)

c, Với \(x=3+2\sqrt{3}\)thì \(B=\frac{2}{3-2+2\sqrt{3}}=\frac{2}{1+2\sqrt{3}}\)