\(\le\)a,b,c\(\le\)1 và a+...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
15 tháng 6 2020

1.

TH1: nếu trong 3 số có ít nhất 1 số bằng 0, không mất tính tổng quát, giả sử đó là a \(\Rightarrow b+c=0\Rightarrow b=-c\)

\(\Rightarrow a^{2011}+b^{2011}+c^{2011}=0+b^{2011}+\left(-b\right)^{2011}=0< 2\) (thỏa mãn)

TH2: nếu cả 3 số đều khác 0 \(\Rightarrow\) trong 3 số tồn tại ít nhất 1 số âm, giả sử đó là a

\(\Rightarrow a^{2011}< 0\)

Mặt khác do \(-1\le b\le1\Rightarrow b^{2011}\le\left|b\right|^{2011}\le1\)

Tương tự: \(c^{2011}\le1\)

\(\Rightarrow a^{2011}+b^{2011}+c^{2011}\le a^{2011}+1+1\le a^{2011}+2< 2\) (đpcm)

2.

\(\Leftrightarrow\frac{2\left(x-5\right)+10}{x-5}-\frac{3}{x-1}< 2\)

\(\Leftrightarrow2+\frac{10}{x-5}-\frac{3}{x-1}< 2\Leftrightarrow\frac{10}{x-5}-\frac{3}{x-1}< 0\)

\(\Leftrightarrow\frac{10x-10-3x+15}{\left(x-5\right)\left(x-1\right)}< 0\Leftrightarrow\frac{7x+5}{\left(x-5\right)\left(x-1\right)}< 0\)

\(\Rightarrow\left[{}\begin{matrix}x< -\frac{5}{7}\\1< x< 5\end{matrix}\right.\)

3 tháng 7 2018

\(1.\) Giả sử : \(a\ge b\ge c\Rightarrow a+b\ge a+c\ge b+c\)

Ta có : \(\dfrac{c}{a+b}\le\dfrac{c}{b+c};\dfrac{b}{a+c}\le\dfrac{b}{b+c};\dfrac{a}{b+c}=\dfrac{a}{b+c}\)

\(\Rightarrow\dfrac{c}{a+b}+\dfrac{b}{a+c}+\dfrac{a}{b+c}\le\dfrac{b+c}{b+c}+\dfrac{a}{b+c}=1+\dfrac{a}{b+c}< 1+1=2\left(đpcm\right)\)

\(2.\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{1}{x+y+z}\)

\(\Leftrightarrow\dfrac{yz+xz+xy}{xyz}=\dfrac{1}{x+y+z}\)

\(\Leftrightarrow\left(x+y+z\right)\left(xy+yz+xz\right)=xyz\)

\(\Leftrightarrow x^2y+x^2z+xy^2+y^2z+xyz+xyz+yz^2+xz^2=0\)

\(\Leftrightarrow xy\left(x+y+z\right)+yz\left(x+y+z\right)+xz\left(x+z\right)=0\)

\(\Leftrightarrow\left(x+y+z\right)y\left(x+z\right)+xz\left(x+z\right)=0\)

\(\Leftrightarrow\left(x+z\right)\left(xy+y^2+yz+xz\right)=0\)

\(\Leftrightarrow\left(x+y\right)\left(y+z\right)\left(x+z\right)=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=-y\\y=-z\\x=-z\end{matrix}\right.\)

+) Với : \(x=-y\) , ta có :

Đpcm \(\Leftrightarrow-\dfrac{1}{y^{2011}}+\dfrac{1}{y^{2011}}+\dfrac{1}{z^{2011}}=\dfrac{1}{-y^{2011}+y^{2011}+z^{2011}}\)

\(\Leftrightarrow\dfrac{1}{z^{2011}}=\dfrac{1}{z^{2011}}\left(luôn-đúng\right)\)

Tương tự với 2 TH còn lại .

\(\RightarrowĐCPM\)

7 tháng 9 2019

Làm bài này một hồi chắc bay não:v

Bài 1:

a) Áp dụng BĐT AM-GM:

\(VT\le\frac{a+b}{4}+\frac{b+c}{4}+\frac{c+a}{4}=\frac{a+b+c}{2}^{\left(đpcm\right)}\)

Đẳng thức xảy ra khi a = b = c.

b)Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có đpcm.

Bài 2:

a) Dấu = bài này không xảy ra ? Nếu đúng như vầy thì em xin một slot, ăn cơm xong đi ngủ rồi dậy làm:v

b) Theo BĐT Bunhicopxki:

\(VT^2\le3.\left[\left(a+b\right)+\left(b+c\right)+\left(c+a\right)\right]=6\Rightarrow VT\le\sqrt{6}\left(qed\right)\)

Đẳng thức xảy r akhi \(a=b=c=\frac{1}{3}\)

Bài 3: Theo BĐT Cauchy-Schwarz và bđt AM-GM, ta có:

\(VT\ge\frac{4}{2-\left(x^2+y^2\right)}\ge\frac{4}{2-2xy}=\frac{2}{1-xy}\)

7 tháng 9 2019

Nói trước là bài 3 em không chắc, tự dưng thấy tại sao lại có đk \(\left|x\right|< 1;\left|y\right|< 1?!?\) Chẳng lẽ lời giải của em sai hay là đề thừa?

6 tháng 9 2019

Bài 1:Cách thông thường nhất là sos hoặc cauchy-Schwarz nhưng thôi ko làm:v Thử cách này cho nó mới dù rằng ko chắc

Giả sử \(a\ge b\ge c\Rightarrow c\le1\Rightarrow a+b=3-c\ge2\) và \(a\ge1\)

Ta có \(LHS=a^3.a+b^3.b+c^3.c\) 

\(=\left(a^3-b^3\right)a+\left(b^3-c^3\right)\left(a+b\right)+c^3\left(a+b+c\right)\)

\(\ge\left(a^3-b^3\right).1+\left(b^3-c^3\right).2+3c^3\)

\(=a^3+b^3+c^3=RHS\)

Đẳng thức xảy ra khi a = b = c = 1

6 tháng 9 2019

Bài 2:

\(BĐT\Leftrightarrow\frac{c^2}{a^2+b^2}+\frac{a^2}{b^2+c^2}+\frac{b^2}{c^2+a^2}\le\frac{a^3+b^3+c^3}{2abc}\)

Đến đây bớt 3/2 ở mỗi vế rồi dùng sos xem sao? Giờ phải ăn cơm đi học rồi, chiều về làm, ko được sẽ nghĩ cách khác.

1 tháng 5 2019

nhiều thế

a) \(\frac{5x-2}{2}\ge\frac{3-x}{3}\Leftrightarrow\frac{3\left(5x-2\right)}{6}\ge\frac{2\left(3-x\right)}{6}\Leftrightarrow15x-6\ge6-2x\Leftrightarrow x\ge\frac{12}{17}\)

0 [ 12/17

13 tháng 5 2021

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge6\)

=> \(-\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\le-6\)

=> \(-\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\le-6.\frac{3}{2}\)

=> \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)

=> \(1+\frac{a}{b}+\frac{a}{c}+\frac{b}{a}+1+\frac{b}{c}+\frac{c}{a}+\frac{c}{b}+1\ge9\)

=> \(\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{a}{c}+\frac{c}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)\ge6\)(1)

Dễ thấy \(\frac{a}{b}+\frac{b}{a}\ge2\)(với a,b > 0)

=> (1) đúng 

=> BĐTđược chứng minh

14 tháng 5 2021

b)Đặt  \(A=a+b+c+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\left(a,b,c>0\right)\).

\(A=4\left(a+b+c\right)-3\left(a+b+c\right)+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\).

\(A=\left(4a+\frac{1}{a}\right)+\left(4b+\frac{1}{b}\right)+\left(4c+\frac{1}{c}\right)-3\left(a+b+c\right)\).

Vì \(a>0\)nên áp dụng bất đẳng thức Cô-si cho 2 số dương, ta được:

\(4a+\frac{1}{a}\ge2\sqrt{4.a.\frac{1}{a}}=4\left(1\right)\).

Dấu bằng xảy ra \(\Leftrightarrow4a=\frac{1}{a}\Leftrightarrow a=\frac{1}{2}\).

 Chứng minh tương tự, ta được:

\(4b+\frac{1}{b}\ge4\left(b>0\right)\left(2\right)\).
Dấu bằng xảy ra \(\Leftrightarrow b=\frac{1}{2}\).

Chứng minh tương tự, ta được:

\(4c+\frac{1}{c}\ge4\left(c>0\right)\left(3\right)\).
Dấu bằng xảy ra \(\Leftrightarrow c=\frac{1}{2}\).

Từ \(\left(1\right),\left(2\right),\left(3\right)\), ta được:

\(\left(4a+\frac{1}{a}\right)+\left(4b+\frac{1}{b}\right)+\left(4c+\frac{1}{c}\right)\ge4+4+4=12\).

\(\Leftrightarrow\left(4a+\frac{1}{a}\right)+\left(4b+\frac{1}{b}\right)+\left(4c+\frac{1}{c}\right)-3\left(a+b+c\right)\ge\)\(12-3\left(a+b+c\right)\).

\(\Leftrightarrow A\ge12-3\left(a+b+c\right)\left(4\right)\).

Mặt khác, ta có: \(a+b+c\le\frac{3}{2}\).

\(\Leftrightarrow3\left(a+b+c\right)\le\frac{9}{2}\).

\(\Rightarrow-3\left(a+b+c\right)\ge-\frac{9}{2}\).

\(\Leftrightarrow12-3\left(a+b+c\right)\ge\frac{15}{2}\left(5\right)\).
Dấu bằng xảy ra \(\Leftrightarrow a+b+c=\frac{3}{2}\).

Từ \(\left(4\right)\)và \(\left(5\right)\), ta được:

\(A\ge\frac{15}{2}\).

Dấu bằng xảy ra \(\Leftrightarrow a=b=c=\frac{1}{2}\).

Vậy với \(a,b,c>0\)và \(a+b+c\le\frac{3}{2}\)thì \(a+b+c+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{15}{2}\).

19 tháng 2 2020

Bài 3 :

Ta có : \(A=x^2+x+2012\)

=> \(A=x^2+x+\left(\frac{1}{2}\right)^2+\frac{8047}{4}\)

=> \(A=\left(x+\frac{1}{2}\right)^2+\frac{8047}{4}\)

- Ta thấy : \(\left(x+\frac{1}{2}\right)^2\ge0\forall x\)

=> \(\left(x+\frac{1}{2}\right)^2+\frac{8047}{4}\ge\frac{8047}{4}\forall x\)

- Dấu "=" xảy ra <=> \(x+\frac{1}{2}=0\)

<=> \(x=-\frac{1}{2}\)

Vậy MinA = \(\frac{8047}{4}\) <=> x = \(-\frac{1}{2}\) .

Bài 1 :

a, Ta có : \(\left(3x-2\right)\left(4+5x\right)=0\)

=> \(\left[{}\begin{matrix}3x-2=0\\4+5x=0\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}3x=2\\5x=-4\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x=\frac{2}{3}\\x=-\frac{4}{5}\end{matrix}\right.\)

Vậy phương trình có nghiệm là x = \(\frac{2}{3}\), x = \(-\frac{4}{5}\) .

b,- ĐKXĐ : \(\left\{{}\begin{matrix}x-1\ne0\\x+1\ne0\end{matrix}\right.\) => \(\left\{{}\begin{matrix}x\ne1\\x\ne-1\end{matrix}\right.\)

=> \(x\ne\pm1\)

Ta có : \(\frac{x+1}{x-1}-\frac{4}{x+1}=\frac{3-x^2}{1-x^2}\)

=> \(\frac{\left(x+1\right)^2}{x^2-1}-\frac{4\left(x-1\right)}{x^2-1}=\frac{x^2-3}{x^2-1}\)

=> \(\left(x+1\right)^2-4\left(x-1\right)=x^2-3\)

=> \(x^2+2x+1-4x+4=x^2-3\)

=> \(-2x=-3-5\)

=> \(x=4\left(TM\right)\)

Vậy phương trình có nghiệm là x = 4 .

c, Ta có : \(\frac{10x+3}{2009}+\frac{10x-1}{2013}=\frac{10x+1}{2011}-\frac{2-10x}{2014}\)

=> \(\frac{10x+3}{2009}+\frac{10x-1}{2013}=\frac{10x+1}{2011}+\frac{10x-2}{2014}\)

=> \(\frac{10x+3}{2009}+1+\frac{10x-1}{2013}+1=\frac{10x+1}{2011}+1+\frac{10x-2}{2014}+1\)

=> \(\frac{10x+3}{2009}+\frac{2009}{2009}+\frac{10x-1}{2013}+\frac{2013}{2013}=\frac{10x+1}{2011}+\frac{2011}{2011}+\frac{10x-2}{2014}+\frac{2014}{2014}\)

=> \(\frac{10x+2012}{2009}+\frac{10x+2012}{2013}=\frac{10x+2012}{2011}+\frac{10x+2012}{2014}\)

=> \(\frac{10x+2012}{2009}+\frac{10x+2012}{2013}-\frac{10x+2012}{2011}-\frac{10x+2012}{2014}=0\)

=> \(\left(10x+2012\right)\left(\frac{1}{2009}+\frac{1}{2013}-\frac{1}{2011}-\frac{1}{2014}\right)=0\)

=> \(10x+2012=0\)

=> \(x=-\frac{2012}{10}\)

Vậy phương trình có nghiệm là x = \(-\frac{2012}{10}\) .

19 tháng 2 2020

Bài 3:

Giải:

Ta có : A = x2 + x + 2012

= x2 + 2.\(\frac{1}{2}\).x + \(\frac{1}{4}\) + \(\frac{8047}{4}\)

= (x + \(\frac{1}{2}\))2 + \(\frac{8047}{4}\)\(\frac{8047}{4}\)

⇒ Amin = \(\frac{8047}{4}\) ⇔ (x + \(\frac{1}{2}\))2 = 0 ⇔ x = \(-\frac{1}{2}\)

Vậy Amin = \(\frac{8047}{4}\) tại x = \(-\frac{1}{2}\)

Chúc bạn học tốt@@