Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét \(\sqrt{\dfrac{\left(a+bc\right)\left(b+ac\right)}{c+ab}}=\sqrt{\dfrac{\left(a\left(a+b+c\right)+bc\right)\left(b\left(a+b+c\right)+ac\right)}{c\left(a+b+c\right)+ab}}\)
\(=\sqrt{\dfrac{\left(a^2+ab+ac+bc\right)\left(ab+b^2+bc+ac\right)}{ac+bc+c^2+ab}}\)
\(=\sqrt{\dfrac{\left(a+b\right)\left(a+c\right)\left(a+b\right)\left(b+c\right)}{\left(a+c\right)\left(b+c\right)}}\)\(=\sqrt{\left(a+b\right)^2}=a+b\)
Tương tự cho 2 đẳng thức còn lại rồi cộng theo vế
\(P=a+b+b+c+c+a=2\left(a+b+c\right)=2\)
Sử dụng AM-GM, ta có
\(P=\sum\sqrt{\dfrac{ab}{ab+c}}=\sum\sqrt{\dfrac{ab}{ab+c\left(a+b+c\right)}}=\sum\sqrt{\dfrac{ab}{\left(c+b\right)\left(c+a\right)}}\le\dfrac{1}{2}\sum\dfrac{a}{c+b}+\dfrac{b}{c+a}=\dfrac{3}{2}\)
a/ Xét hiệu: \(a+b\ge2\sqrt{ab}\)
\(\Leftrightarrow a-2\sqrt{ab}+b\ge0\)
\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\)(luôn đúng) (đpcm)
''='' xảy ra khi a = b
b/ Sửa đề chút nhé: CMR:
\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{1}{\sqrt{ab}}+\dfrac{1}{\sqrt{bc}}+\dfrac{1}{\sqrt{ac}}\)
Áp dụng bđt AM-GM có:
\(\dfrac{1}{a}+\dfrac{1}{b}\ge2\sqrt{\dfrac{1}{a}\cdot\dfrac{1}{b}}=2\sqrt{\dfrac{1}{ab}}=\dfrac{2}{\sqrt{ab}}\);
Tương tự ta có:
\(\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{2}{\sqrt{bc}}\); \(\dfrac{1}{a}+\dfrac{1}{c}\ge\dfrac{2}{\sqrt{ac}}\)
Cộng 2 vế ba bđt trên ta được:
\(2\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge2\left(\dfrac{1}{\sqrt{ab}}+\dfrac{1}{\sqrt{bc}}+\dfrac{1}{\sqrt{ac}}\right)\)
\(\Rightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{1}{\sqrt{ab}}+\dfrac{1}{\sqrt{bc}}+\dfrac{1}{\sqrt{ac}}\left(đpcm\right)\)
''='' xảy ra khi a = b = c
Lời giải:
Áp dụng BĐT AM-GM:
\(P=\frac{\sqrt{ab}}{(a+c)+(b+c)}+\frac{\sqrt{bc}}{(b+a)+(c+a)}+\frac{\sqrt{ca}}{(c+b)+(a+b)}\)
\(\leq \underbrace{\frac{\sqrt{ab}}{2\sqrt{(a+c)(b+c)}}+\frac{\sqrt{bc}}{2\sqrt{(b+a)(c+a)}}+\frac{\sqrt{ca}}{2\sqrt{(c+b)(a+b)}}}_{M}(*)\)
Xét:
\(M=\frac{1}{2}\frac{\sqrt{ab(a+b)}+\sqrt{bc(b+c)}+\sqrt{ca(c+a)}}{\sqrt{(a+b)(b+c)(c+a)}}(1)\)
Theo BĐT Bunhiacopxky và AM-GM:
\((\sqrt{ab(a+b)}+\sqrt{bc(b+c)}+\sqrt{ca(c+a)})^2\leq (ab+bc+ac)(a+b+b+c+c+a)\)
\(=2(ab+bc+ac)(a+b+c)=2[(a+b)(b+c)(c+a)+abc]\)
\(\leq 2[(a+b)(b+c)(c+a)+\frac{(a+b)(b+c)(c+a)}{8}]=\frac{9}{4}(a+b)(b+c)(c+a)\)
\(\Rightarrow \sqrt{ab(a+b)}+\sqrt{bc(b+c)}+\sqrt{ca(c+a)}\leq \frac{3}{2}\sqrt{(a+b)(b+c)(c+a)}(2)\)
Từ \((1);(2)\Rightarrow M\leq \frac{1}{2}.\frac{3}{2}=\frac{3}{4}(**)\)
Từ \((*); (**)\Rightarrow P\leq M\leq \frac{3}{4}\)
Vậy \(P_{\max}=\frac{3}{4}\Leftrightarrow a=b=c\)
Lời giải:
Áp dụng BĐT AM-GM ngược dấu ta có:
\(A=\frac{ab}{\sqrt{c+ab}}+\frac{bc}{\sqrt{a+bc}}+\frac{ca}{\sqrt{b+ac}}=\frac{ab}{\sqrt{c(a+b+c)+ab}}+\frac{bc}{\sqrt{a(a+b+c)+bc}}+\frac{ca}{\sqrt{b(a+b+c)+ac}}\)
\(=\frac{ab}{\sqrt{(c+a)(c+b)}}+\frac{bc}{\sqrt{(a+b)(a+c)}}+\frac{ca}{\sqrt{(b+a)(b+c)}}\)
\(\leq \frac{1}{2}\left(\frac{ab}{c+a}+\frac{ab}{c+b}\right)+\frac{1}{2}\left(\frac{bc}{a+b}+\frac{bc}{a+c}\right)+\frac{1}{2}\left(\frac{ca}{b+a}+\frac{ca}{b+c}\right)\)
\(A\leq \frac{1}{2}\left(\frac{ab+bc}{a+c}+\frac{ab+ac}{b+c}+\frac{bc+ac}{a+b}\right)=\frac{1}{2}(b+a+c)=\frac{1}{2}\)
Vậy \(A_{\max}=\frac{1}{2}\) tại \(a=b=c=\frac{1}{3}\)
Ta có:
\(\dfrac{ab}{\sqrt{c+ab}}=\dfrac{ab}{\sqrt{c\left(a+b+c\right)+ab}}=\dfrac{ab}{\sqrt{\left(a+c\right)\left(b+c\right)}}=\dfrac{\sqrt{ab}}{\sqrt{a+c}}.\dfrac{\sqrt{ab}}{\sqrt{b+c}}\)
\(\Rightarrow\dfrac{ab}{\sqrt{c+ab}}\le\dfrac{1}{2}\left(\dfrac{ab}{a+c}+\dfrac{ab}{b+c}\right)\)
Tương tự ta có:
\(\dfrac{bc}{\sqrt{a+bc}}\le\dfrac{1}{2}\left(\dfrac{bc}{a+b}+\dfrac{bc}{a+c}\right)\) ; \(\dfrac{ac}{\sqrt{b+ac}}\le\dfrac{1}{2}\left(\dfrac{ac}{a+b}+\dfrac{ac}{b+c}\right)\)
Cộng vế với vế ta được:
\(A\le\dfrac{1}{2}\left(\dfrac{ab}{a+c}+\dfrac{bc}{a+c}+\dfrac{ab}{b+c}+\dfrac{ac}{b+c}+\dfrac{bc}{a+b}+\dfrac{ac}{a+b}\right)\)
\(\Rightarrow A\le\dfrac{1}{2}\left(\dfrac{b\left(a+c\right)}{a+c}+\dfrac{a\left(b+c\right)}{b+c}+\dfrac{c\left(a+b\right)}{a+b}\right)\)
\(\Rightarrow A\le\dfrac{1}{2}\left(a+b+c\right)=\dfrac{1}{2}\)
\(\Rightarrow A_{max}=\dfrac{1}{2}\) khi \(a=b=c=\dfrac{1}{3}\)
Áp dụng BĐT Cô-si:
\(A\le\dfrac{a+b}{2\sqrt{c+ab}}+\dfrac{b+c}{2\sqrt{a+bc}}+\dfrac{c+a}{2\sqrt{b+ac}}\)\(\le\dfrac{a+b}{2\sqrt{2\sqrt{abc}}}+\dfrac{b+c}{2\sqrt{2\sqrt{abc}}}+\dfrac{c+a}{2\sqrt{2\sqrt{abc}}}\)\(=\dfrac{a+b+c}{\sqrt[4]{4abc}}=\dfrac{1}{\sqrt[4]{4abc}}\ge\dfrac{1}{\sqrt{\left(a+b+c\right).\dfrac{2}{3}}}\)(BĐT Cô-si)\(=\dfrac{1}{\sqrt{\dfrac{2}{3}}}=\dfrac{\sqrt{6}}{2}\)
Vậy Amin=\(\dfrac{\sqrt{6}}{2}\Leftrightarrow a=b=c=\dfrac{1}{3}\)