Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(\Delta_1+\Delta_2+\Delta_3=a^2-4b+b^2-4c+c^2-4a=a^2+b^2+c^2-48\)
Dễ thấy:\(a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}=48\Rightarrow\Delta_1+\Delta_2+\Delta_3\ge0\)
Khi đó có ít nhất một phương trình có nghiệm
Gọi nghiệm chung của 2 phương trình là m
Ta có:\(m^2+am+1=0;m^2+bm+17=0\)
\(\Rightarrow2m^2+m\left(a+b\right)+18=0\)
Xét \(\Delta=\left(a+b\right)^2-144\ge0\Rightarrow\left|a+b\right|\ge12\)
Mà \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\ge12\)
Xét \(a+b=12\Rightarrow.....\)
Xét \(a+b=-12\Rightarrow....\)
Mấy chỗ ..... bạn tự làm nốt
Câu hỏi của Trần Hà My - Toán lớp 9 - Học toán với OnlineMath
Bạn tham khảo link này nhé!