Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tam giác ABC có Góc A + góc B+ góc C = 180 độ ( định í tổng 3 góc trong một tam giác
Suy ra góc C = 40 độ
b) Xét tam giác vuông BHC có góc BAC + góc ABH = 90 độ => góc ABH = 50 độ
Xét tam giác vuông HBC có góc BCA+ góc CBH = 90 độ=> góc CAH = 50 độ
Vì góc ABH = góc CAH
nên BH là phân giác của góc ABH)
c) vì Ax song song với BH
Cy song song với BH
nên Ax vuông góc với AC, Cy vuông góc với AC
Ta có góc BCy = góc BCA + góc ACy= 40 độ + 90 độ = 130 độ
Góc xAB + góc ABC + góc BCy = 90 độ + 60 độ + 130 độ = 280 độ
A B C E F x y M I K
a) Gọi I là trung điểm của AB,
K là trung điểm của AC.
Ta có:
\(IA=IE=MK=\frac{1}{2}AB\)
\(KF=KA=IM=\frac{1}{2}AC\)
TA CÓ TAM GIÁC IAE VÀ AKF LẦN LƯỢT CÂN TẠI I VÀ K
\(\Rightarrow\widehat{EIB}=2\widehat{xAB}=42^o;\widehat{CKF}=2\widehat{CAY}=42^o\)
\(\Rightarrow\widehat{EIB}=\widehat{CKF}\)
MI//AC
=> BIM=BAC ( đồng vị) (1)
M//AB
=> MKC=BAC (đồng vị)(2)
từ (1) và (2)
\(\Rightarrow\widehat{BIM}=\widehat{MKC}\)
TỪ ĐÂY TA CÓ THỂ DỄ DÀNG CÓ EIM=MKF
=> \(\Delta EIM\)= \(\Delta MKF\)
=> ME = MF
=> TAM GIÁC MEF cân tại M
Cho nửa đường tròn đường kính AB và C là một điểm nằm giữa A và B. Trên nửa mặt phẳng có bờ AB chứa nửa đường tròn, vẽ 2 tia Ax và By tiếp xúc với nửa đường tròn đã cho. Trên tia Ax lấy điểm I (với I khác A); đường thẳng vuông góc với CI tại C cắt tia By tại K. Đường tròn đường kính IC cắt IK tại E.
a) C/m tứ giác CEKB nội tiếp
b) C/m AI*BK = AC*CB
c) C/m điểm E nằm trên nửa đường tròn đường kính AB
d) Cho các điểm A, B, I cố định. Hãy xác định vị trí điểm C sao cho SABKI lớn nhất
1. Ta có
a⊥b và c⊥b
=>a//c ( 2 đường thẳng cùng vuông góc với đường thẳng thứ 3 thì // vs nhau )
2. Ta có
a//b mà b⊥c => a⊥c b M a c
3. Ta có
d//a và d//b
=> a//b ( 2 đường thẳng cùng song song vs đường thẳng thứ 3 thì // vs nhau )
4.