Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cái này tương tự nà chỉ khác tử -> mẫu Câu hỏi của Thiên An - Toán lớp 9 - Học toán với OnlineMath
Áp dụng bđt \(\frac{1}{x+y}\le\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}\right)\)
Ta có
\(\frac{1}{2a+b+c}\le\frac{1}{4}\left(\frac{1}{2a}+\frac{1}{b+c}\right)=\frac{1}{8a}+\frac{1}{16}\left(\frac{1}{b}+\frac{1}{c}\right)\)
\(\frac{1}{a+2b+c}\le\frac{1}{8b}+\frac{1}{16}\left(\frac{1}{a}+\frac{1}{c}\right)\)
\(\frac{1}{a+b+2c}\le\frac{1}{8c}+\frac{1}{16}\left(\frac{1}{a}+\frac{1}{b}\right)\)
\(\Rightarrow\frac{1}{2a+b+c}+\frac{1}{a+2b+c}+\frac{1}{a+b+2c}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=1\)
\(\sum\frac{1}{2a+b+c}=\sum\frac{1}{a+a+b+c}\le\frac{1}{16}\sum\left(\frac{1}{a}+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=\frac{1}{16}\left(\frac{4}{a}+\frac{4}{b}+\frac{4}{c}\right)=1\)
Dấu "=" xảy ra khi \(a=b=c=\frac{3}{4}\)
a) Áp dụng BĐT \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\) ta có :
\(\frac{1}{a+b-c}+\frac{1}{b+c-a}\ge\frac{4}{a+b-c+b+c-a}=\frac{4}{2b}=\frac{2}{b}\)
Tương tự :
\(\frac{1}{b+c-a}+\frac{1}{c+a-b}\ge\frac{4}{b+c-a+c+a-b}=\frac{4}{2c}=\frac{2}{c}\)
\(\frac{1}{a+b-c}+\frac{1}{c+a-b}\ge\frac{4}{a+b-c+c+a-b}=\frac{4}{2a}=\frac{2}{a}\)
Cộng theo vế :
\(\Rightarrow2\left(\frac{1}{a+b-c}+\frac{1}{b+c-a}+\frac{1}{c+a-b}\right)\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
\(\Rightarrow\frac{1}{a+b-c}+\frac{1}{b+c-a}+\frac{1}{c+a-b}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\left(đpcm\right)\)
Đẳng thức xảy ra <=> a = b = c
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\)
\(\Leftrightarrow x^2y+x^2z+y^2z+y^2x+z^2x+z^2y+2xyz=0\)
\(\Leftrightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)=0\)
Với x + y = 0 <=> x = - y thì
\(\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}=\frac{1}{x^3+y^3+z^3}\)
\(\frac{1}{z^3}=\frac{1}{z^3}\)(đúng)
Tương tự với các trường hợp còn lại
a) \(\frac{1}{x}+\frac{1}{y}\ge\frac{\left(1+1\right)^2}{x+y}=\frac{4}{x+y}\)
\(\Leftrightarrow\frac{1}{x+y}\le\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}\right)\)
b)
Ta có
\(\frac{ab}{c+1}=\frac{ab}{a+b}=\frac{ab}{\left(a+c\right)+\left(b+c\right)}\le\frac{ab}{4}\left(\frac{1}{a+c}+\frac{1}{b+c}\right)\)
\(\frac{bc}{a+1}=\frac{bc}{\left(a+b\right)+\left(a+c\right)}\le\frac{bc}{4}\left(\frac{1}{a+b}+\frac{1}{a+c}\right)\)
\(\frac{ac}{b+1}=\frac{ac}{\left(a+b\right)+\left(b+c\right)}\le\frac{ac}{4}\left(\frac{1}{a+b}+\frac{1}{b+c}\right)\)
\(\Leftrightarrow\frac{ab}{c+1}+\frac{bc}{a+1}+\frac{ac}{b+1}\le\frac{ab}{4\left(a+c\right)}+\frac{ab}{4\left(b+c\right)}+\frac{bc}{4\left(a+b\right)}+\frac{bc}{4\left(a+c\right)}+\frac{ac}{4\left(A+b\right)}+\frac{ac}{4\left(b+c\right)}\)
\(=\frac{ab+bc}{4\left(a+c\right)}+\frac{ab+ac}{4\left(b+c\right)}+\frac{bc+ac}{4\left(a+b\right)}=\frac{1}{4}\left(\frac{b\left(a+c\right)}{a+c}\right)+\frac{1}{4}\left(\frac{a\left(b+c\right)}{b+c}\right)+\frac{c\left(a+b\right)}{a+b}\)
\(=\frac{a+b+c}{4}=\frac{1}{4}\)
2.
a, Có : (a+b+c).(1/a+1/b+1/c)
>= \(3\sqrt[3]{abc}.3\sqrt[3]{\frac{1}{abc}}\)
= 9
=> ĐPCM
Dấu "=" xảy ra <=> a=b=c > 0
2.
b, Xét : 2(a+b+c).(1/a+b + 1/b+c + 1/c+a) >= 9 ( theo bđt ở câu a đã c/m )
<=> (a+b+c).(1/a+b + 1/b+c + 1/c+a) >= 9/2
<=> a/b+c + b/c+a + c/a+b + 3 >= 9/2
<=> a/b+c + b/c+a + c/a+b >= 9/3 - 3 = 3/2
=> ĐPCM
Dấu "=" xảy ra <=> a=b=c > 0
1.
Áp dụng bất đẳng thức Cô-si thôi:
\(\frac{1}{a}+\frac{1}{b}=\frac{a+b}{ab}\ge\frac{2\sqrt{ab}}{ab}=\frac{2}{\sqrt{ab}}\ge\frac{2}{\frac{a+b}{2}}=\frac{4}{a+b}\)
Dấu "=" khi a = b
2.
Vì a,b,c là ba cạnh tam giác nên dễ thấy các mẫu số dương.
Áp dụng câu 1 ta có:
\(\frac{1}{a+b-c}+\frac{1}{c+a-b}\ge\frac{4}{a+b-c+c+a-b}=\frac{4}{2a}=\frac{2}{a}\)
Tương tự:
\(\frac{1}{c+a-b}+\frac{1}{b+c-a}\ge\frac{4}{2c}=\frac{2}{c}\)
\(\frac{1}{b+c-a}+\frac{1}{a+b-c}\ge\frac{4}{2b}=\frac{2}{b}\)
Cộng theo vế ta được:
\(2\left(\frac{1}{a+b-c}+\frac{1}{b+c-a}+\frac{1}{c+a-b}\right)\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
\(\Leftrightarrow\frac{1}{a+b-c}+\frac{1}{b+c-a}+\frac{1}{c+a-b}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\) (đpcm)
Dấu "=" xảy ra khi a = b = c hay tam giác đó đều.