Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2 :
Ta có : \(4p(p-a)\)\(=2\left(a+b+c\right)\left(\dfrac{a+b+c}{2}-a\right)\)
=\(2\left(a+b+c\right)\left(\dfrac{b+c-a}{2}\right)\)
\(=\left(a+b+c\right)\left(b+c-a\right)\)
\(=ab+ac-a^2+b^2+bc-ab+bc+c^2-ac\)
\(=2bc+b^2+c^2-a^2\left(dpcm\right)\)
Vậy :
Bai 2:
Ta có:
\(VP=4p\left(p-a\right)=2p.2p-2a.2p\) (1)
Thay \(a+b+c=2p\) vào (1) ta có:
\(\left(a+b+c\right)^2-2a.\left(a+b+c\right)\)
\(=a^2+b^2+c^2+2ab+2ac+2bc-2a^2-2ab-2ac\)
\(=-a^2+b^2+c^2+2bc=VT\)
Vậy \(2bc+b^2+c^2-a^2=4p\left(p-a\right)\)
Chúc bạn học tốt!!!
Do a\(\ge\)-1
=>2a+3\(\ge\)0
=>(a-3)2(2a+3)\(\ge0\)
=> (a2-6a+9)(2a+3)\(\ge0\)
=>2a3+3a2-12a2-18a+18a+27\(\ge0\)
=> 2a3-9a2+27\(\ge0\)
=>2a3\(\ge\)9a2-27
TT=>2b3\(\ge9b^2-27\)
2c3\(\ge9c^2-27\)
=>2M\(\ge\)9(a2+b2+c2)-81=9.9-81=0
=>\(M\ge0\)
ta có:\(a\ge-1\Rightarrow a+1\ge0\)
mà\(\left(a-2\right)^2\ge0\)
\(\Rightarrow\)\(\left(a+1\right)\left(a-2\right)^2\ge0\)
\(\Leftrightarrow\)\(\left(a+1\right)\left(a^2-4a+4\right)\)\(\ge0\)
\(\Leftrightarrow a^3-4a^2+4a+a^2-4a+4\ge0\)
\(\Leftrightarrow a^3+4-3a^2\ge0\)
\(\Leftrightarrow a^3+4\ge3a^2\)
tương tự:\(b^3+4\ge3b^2;c^3+4\ge3c^2\)
\(\Rightarrow a^3+b^3+c^3+12\ge3\left(a^2+b^2+c^2\right)\)
mà\(a^2+b^2+c^2=9\)
\(\Rightarrow a^3+b^3+c^3\ge27-12=15\)
Dấu "=" xayr ra khi:
\(\left(a;b;c\right)=\left(-1;2;2\right);\left(2;2;-1\right);\left(2;-1;2\right)\)
Vế phải = (b + c)2 - a2 = (b + c - a). (b +c + a) = (2p -a - a).2p = 2.(p -a).2p = 4p. (p- a) = Vế trái
vậy...
Gọi \(2bc+b^2 +c^2-a^2=VT\)
và \(4p\left(p-a\right)=VP\)
Biến đổi VP ta có :
\(4p\left(p-a\right)=2p\left(2p-2a\right)\)
\(=\left(a+b+c\right)\left(b-c-a\right)\)
\(=2bc+b^2+c^2-a^2=VT\) (đpcm)
Vậy ......
\(A=a^3+b^3+c^3+a^2\left(b+c\right)+b^2\left(a+c\right)+c^2\left(a+b\right)\)
\(A=a^2\left(a+b+c\right)+b^2\left(a+b+c\right)+c^2\left(a+b+c\right)\)
\(A=a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{1+1+1}=\frac{1}{3}\) ( Cauchy-Schwarz dạng Engel )
Dấu "=" xảy ra \(\Leftrightarrow\)\(a=b=c=\frac{1}{3}\)
...
1,
Ta có:
\(a^2+b^2=106\\ \Leftrightarrow a^2-2ab+b^2=106-2ab\\ \Leftrightarrow\left(a-b\right)^2=106-2ab\\ \Rightarrow ab=\frac{106-4^2}{2}=45\left(vìa-b=4\right)\)
\(a^3+b^3=a^3-3a^2b+3ab^2-b^3+3a^2b-3ab^2\\ =\left(a-b\right)^3+3ab\left(a-b\right)\\ =4^3+3\cdot45\cdot4\left(vìa-b=4;ab=45\right)\\ =604\)
2,
Ta có:
\(2bc+b^2+c^2-a^2=\left(b+c\right)^2-a^2\\ =\left(b+c+a\right)\left(b+c-a\right)\\ =2p\left(b+c-a\right)\\ =2p\left(a+b+c-2a\right)\\ =2p\left(2p-2a\right)\\ =4p\left(p-a\right)\left(Đpcm\right)\)
Phần 1 mik ko nghĩ ra thông cảm
Phần 2 như sau :
Ta có: 2bc+\(b^2\)+\(c^2\)-\(a^2\)
=\(\left(2bc+b^2+c^2\right)\)\(-a^2\)
= \(\left(b+c\right)^2-a^2\)
= \(\left(a+b+c\right)\left(b+c-a\right)\) (1)
Thay a+b+c=2p và b+c=2p-a vào (1) ta được :
2p.(2p-a-a) = 2p.(2p-2a) = 2p.2(p-a) =4p.(p-a) (đpcm)