\(1+3+3^2+....+3^{30}\)

 Tìm chữ số tận cùng của A

 2.Tìm các số c...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 10 2017

mk cần gấp lắm rồi

19 tháng 10 2017

\(A=1+2+2^2+...+2^{99}\)

\(2A=2+2^2+2^3+2^{100}\)

\(2A-A=\left(2+2^2+...+2^{100}\right)-\left(1+2+...+2^{99}\right)\)

\(A=2^{100}-1< 2^{100}\)

19 tháng 10 2017

A=2^100-1

suy ra A<2^100

16 tháng 6 2018

10 \(\le\)\(\le\)99 => 21 < 2n + 1 < 199 và 31 < 3n + 1 < 298

Vì 2n + 1 là số lẻ mà 2n + 1 là số chính phương

=> 2n + 1 thuộc { 25 ; 49  ; 81 ; 121 ;  169 } tương ứng số n thuộc { 12; 24; 40; 60; 84 } ( 1 )

Vì 3n + 1 là số chính phương và 31 < 3n + 1 < 298

=> 3n + 1 thuộc { 49 ; 64 ; 100 ; 121 ; 169 ; 196 ; 256 ; 289 } tương ứng n thuộc { 16 ; 21 ; 33 ; 40 ; 56 ; 65 ; 85 ; 96 } ( 2 )

Từ 1 và 2 => n = 40 thì 2n + 1 và 3n + 1 đều là số chính phương

29 tháng 11 2018

bài cô giao đi hỏi 

20 tháng 8 2016

Bài làm

a) Ta có:

\(A=\)\(3+3^2+3^3+...+3^{2009}\)

\(3A=3^2+3^3+3^4+...+3^{2010}\)

\(3A-A=2A=\left(3^2+3^3+3^4+...+3^{2010}\right)-\left(3+3^2+3^3+...+3^{2009}\right)\)

\(2A=3^{2010}-3\)

Từ đó

=> \(2A+3=3^{2010}-3+3=3^{2010}\)

=> n = 2010

21 tháng 5 2017

Lớp 6 đã học lập phương và bình phương của 1 số rồi à ?

23 tháng 6 2017

ko phải đâu

11 tháng 11 2016

A=\(17^{2008}-11^{2008}-3^{2008}\)

A=\(\left(17^4\right)^{502}-11^{2008}-\left(3^4\right)^{502}\)

A=\(83521^{502}-11^{2008}-81^{502}\)
A=\(\left(......1\right)-\left(.......1\right)-\left(........1\right)\)

A=\(\left(.........9\right)\)

Vậy A có chữ số tận cùng là 9

11 tháng 11 2016

2)M=\(17^{25}+24^4-13^{21}\)

M=\(17^{24}\cdot17+\left(24^2\right)^2-13^{20}\cdot13\)

M=\(\left(17^4\right)^6\cdot17+576^2-\left(13^4\right)^5\cdot13\)

M=\(83521^6\cdot17+\left(......6\right)-28561^5\cdot13\)

M=\(\left(.......1\right)\cdot17+\left(........6\right)-\left(.........1\right)\cdot13\)

M=\(\left(........7\right)+\left(..........6\right)-\left(...........3\right)\)

M=\(\left(...........0\right)⋮10\)

Vậy M\(⋮10\)

22 tháng 11 2016

1. 5n có 2 chữ số tận cùng là 25.

22 tháng 11 2016

1)Vì n>1\(\Rightarrow\)n có dạng 2k,2k+1(k\(\in\)N*)

Xét n có dạng 2k\(\Rightarrow5^{2k}\)=\(25^k\) có 2 chữ số tận cùng là 25

Xét n có dạng 2k+1

\(\Rightarrow5^{2k+1}\)=\(5^{2k}\cdot5=25^k\cdot5\)

\(25^k\) có 2 chữ số tận cùng là 25

\(\Rightarrow\)\(25^k\cdot5\) có 3 chữ số tận cùng là 125

\(\Rightarrow\)\(25^k\cdot5\) có 2 chữ số tận cùng là 25

Vậy trong trường hợp nào thì \(5^n\) luôn có 2 chữ số tận cùng là 25(n>1)

14 tháng 3 2019

\(S=1+3^1+3^2+...+3^{30}\)

\(S=1+\left(3^1+3^3\right)+\left(3^2+3^4\right)+...+\left(3^{28}+3^{30}\right)\)

\(S=1+3.10+3^2.10+...+3^{28}.10\)

Có \(3.10+3^2.10+...+3^{28}.10\)có chữ số tận cùng là 0

\(\Rightarrow1+3.10+3^2.10+...+3^{28}.10\)có chữ số tận cùng là 1

=> Chữ số tận cùng của S là 1.