K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 12 2017

Câu 1:

Theo bài ra ta có:

\(a^{12}+b^{12}=a^{12}+a^{11}b-a^{11}b-ab^{11}+ab^{11}+b^{12}\)

\(=a^{11}\left(a+b\right)-ab\left(a^{10}+b^{10}\right)+b^{11}\left(a+b\right)\)

\(=\left(a+b\right)\left(a^{11}+b^{11}\right)-ab\left(a^{10}+b^{10}\right)\)

\(=\left(a+b\right)\left(a^{12}+b^{12}\right)-ab\left(a^{12}+b^{12}\right)\)(gt cho rồi nhé)

\(=\left(a^{12}+b^{12}\right)\left(a+b-ab\right)\)

\(\Rightarrow a+b-ab=1\)

\(\Leftrightarrow a+b-ab-1=0\)

\(\Leftrightarrow a\left(1-b\right)-\left(1-b\right)=0\)

\(\Leftrightarrow\left(1-b\right)\left(a-1\right)=0\)

\(\)\(\Leftrightarrow\left[{}\begin{matrix}b=1\\a=1\end{matrix}\right.\)

=> a^20 + b^20 = 2

:)) đừng ném đá nhá

7 tháng 12 2017

Giải đúng quá nhỉ?bn giỏi toán quá hihi

22 tháng 3 2018

1a)\(\dfrac{a^2+b^2}{2}\ge\dfrac{\left(a+b\right)^2}{4}\)

\(\Leftrightarrow2\left(a^2+b^2\right)\ge\left(a+b\right)^2\)

\(\Leftrightarrow a^2-2ab+b^2\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\ge0\)(luôn đúng)

b)\(\dfrac{a^2+b^2+c^2}{3}\ge\dfrac{\left(a+b+c\right)^2}{9}\)

\(\Leftrightarrow3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2ac-2bc\ge0\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)(luôn đúng)

22 tháng 3 2018

2a)\(a^2+\dfrac{b^2}{4}\ge ab\)

\(\Leftrightarrow a^2-ab+\dfrac{b^2}{4}\ge0\)

\(\Leftrightarrow a^2-2\cdot\dfrac{1}{2}b\cdot a+\left(\dfrac{1}{2}b\right)^2\ge0\)

\(\Leftrightarrow\left(a-\dfrac{1}{2}b\right)^2\ge0\)(luôn đúng)

b)Đã cm

c)\(a^2+b^2+1\ge ab+a+b\)

\(\Leftrightarrow2a^2+2b^2+2\ge2ab+2a+2b\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(a^2-2a+1\right)+\left(b^2-2b+1\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(a-1\right)^2+\left(b-1\right)^2\ge0\)(luôn đúng)

Dấu bằng xảy ra khi a=b=1

7 tháng 8 2017

Đặt \(ab=x;bc=y;ca=z\) thì có \(x^3+y^3+z^3=3xyz\) dễ nhé

9 tháng 11 2018

\(ab=x;bc=y;ac=z\)

\(\Leftrightarrow x^3+y^3+z^3=3xyz\)

\(\Leftrightarrow x^3+y^3+z^3-3xyz=0\)

\(\Leftrightarrow\left(x+y\right)^3-3xy\left(x+y\right)+z^3-3xyz=0\)

\(\Leftrightarrow\left(x+y\right)^3+z^3-3xy\left(x+y+z\right)=0\)

\(\Leftrightarrow\left[\left(x+y\right)+z\right]\left[\left(x+y\right)^2-z\left(x+y\right)+z^2\right]-3xy\left(x+y+z\right)=0\)

\(\Leftrightarrow\left(x+y+z\right)\left(x^2+2xy+y^2-xz-yz+z^2-3xy\right)=0\)

\(\Leftrightarrow\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+y+z=0\\x=y=z\end{matrix}\right.\)

Tự full nhé?

8 tháng 9 2018

a ) \(a+b+c=0\)

\(\Leftrightarrow\left(a+b+c\right)^2=0\)

\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)=0\)

\(\Leftrightarrow a^2+b^2+c^2+2.0=0\)

\(\Leftrightarrow a^2+b^2+c^2=0\)

Do \(a^2\ge0;b^2\ge0;c^2\ge0\)

\(\Rightarrow a^2+b^2+c^2\ge0\)

Dấu " = " xảy ra \(\Leftrightarrow a=b=c=0\) ( * )

Thay * vào biểu thức M , ta được :

\(M=\left(0-1\right)^{1999}+0^{2000}+\left(0+1\right)^{2001}\)

\(=-1^{1999}+0+1^{2001}\)

\(=-1+0+1\)

\(=0\)

Vậy \(M=0\)

8 tháng 9 2018

\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{abc}\)

\(\Leftrightarrow\dfrac{bc}{abc}+\dfrac{ac}{abc}+\dfrac{ab}{abc}=\dfrac{1}{abc}\)

\(\Leftrightarrow\dfrac{bc+ac+ab-1}{abc}=0\)

\(\Leftrightarrow bc+ac+ab-1=0\)

\(\Leftrightarrow bc+ac+ab=1\)

\(a^2+b^2+c^2=1\)

\(\Rightarrow bc+ac+ab=a^2+b^2+c^2\)

\(\Rightarrow2bc+2ac+2ab=2a^2+2b^2+2c^2\)

\(\Rightarrow2a^2+2b^2+2c^2-2bc-2ac-2ab=0\)

\(\Rightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(a^2-2ac+c^2\right)=0\)

\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2=0\)

Do \(\left(a-b\right)^2\ge0;\left(b-c\right)^2\ge0;\left(a-c\right)^2\ge0\)

\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2\ge0\)

Dấu " = " xảy ra \(\Leftrightarrow a=b=c\)

\(P=\dfrac{a+b}{b+c}+\dfrac{b+c}{c+a}+\dfrac{c+a}{a+b}\)

\(\Rightarrow P=\dfrac{a+b}{a+b}+\dfrac{b+c}{b+c}+\dfrac{a+c}{a+c}\)

\(\Rightarrow P=1+1+1=3\)

Vậy \(P=3\)

9 tháng 4 2017

đăng từng câu 1 thôi, nhiều nhất là 3 câu/ 1 lần hỏi vì đâu có giới hạn số lần hỏi

9 tháng 4 2017

mk sẽ rút kinh nghiệm cám ơn

22 tháng 10 2018

Ta có : \(a^3b^3+b^3c^3+c^3a^3=3a^2b^2c^2\)

\(\Leftrightarrow\left(ab\right)^3+\left(bc\right)^3+\left(ac\right)^3=3ab.bc.ac\)

Đặt \(ab=x;bc=y;ac=z\) . Khi đó , ta có :

\(x^3+y^3+z^3=3xyz\)

\(\Leftrightarrow x^3+y^3+z^3-3xyz=0\)

\(\Leftrightarrow\left(x^3+y^3+3x^2y+3y^2x\right)+z^3-3x^2y-3y^2x-3xyz=0\)

\(\Leftrightarrow\left(x+y\right)^3+z^3-3xy\left(x+y+z\right)=0\)

\(\Leftrightarrow\left(x+y+z\right)\left[\left(x+y\right)^2-\left(x+y\right)z+z^2\right]-3xy\left(x+y+z\right)=0\)

\(\Leftrightarrow\left(x+y+z\right)\left[\left(x+y\right)^2-\left(x+y\right)z+z^2-3xy\right]=0\)

\(\Leftrightarrow\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+y+z=0\\x^2+y^2+z^2-xy-yz-xz=0\end{matrix}\right.\)

Với \(x+y+z=0\Rightarrow ab+ac+bc=0\)

Với \(x^2+y^2+z^2-xy-yz-xz=0\)

\(\Rightarrow2x^2+2y^2+2z^2-2xy-2yz-2xz=0\)

\(\Rightarrow\left(x^2-2xy+y^2\right)+\left(y^2-2yz+z^2\right)+\left(x^2-2xz+z^2\right)=0\)

\(\Rightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(x-z\right)^2=0\)

Lí luận tổng này \(\ge0\) ( làm tắt )

\(\Rightarrow\left\{{}\begin{matrix}x-y=0\\y-z=0\\x-z=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=y\\y=z\end{matrix}\right.\) \(\Rightarrow x=y=z\)

\(\Rightarrow ab=ac=bc\)

....

Đến bước này chịu , bạn xem đề có sai không ?

5 tháng 7 2017

1, \(a^3+b^3+3ab\left(a^2+b^2\right)+6a^2b^2\left(a+b\right)\)

\(=a^3+b^3+3a^3b+3ab^3+6a^2b^2\)

\(=\left(a+b\right)\left(a^2-ab+b^2\right)+3ab\left(a^2+2ab+b^2\right)\)

\(=a^2-ab+b^2+3ab\left(a+b\right)^2\)

\(=a^2-ab+b^2+3ab\)

\(=a^2+2ab+b^2=\left(a+b\right)^2\)

\(=1\)

Vậy A = 1

Bài 2: ( đặt đề bài là A )

Đặt \(b+c-a=x,a+c-b=y,a+b-c=z\)

\(\Rightarrow a+b+c=x+y+z\)

\(\Leftrightarrow A=\left(x+y+z\right)^3-x^3-y^3-z^3\)

\(=x^3+y^3+z^3+3\left(x+y\right)\left(y+z\right)\left(x+z\right)-x^3-y^3-z^3\)

\(=3\left(x+y\right)\left(y+z\right)\left(x+z\right)\)

\(=3.2c.2a.2b=24abc\)

Vậy...

Bài 3:

+) Xét p = 3 có: \(p^2+2=11\in P\) ( t/m )

+) Xét \(p\ne3\) thì:

+ \(p=3k+1\Rightarrow p^2+2=\left(3k+1\right)^2+2=9k^2+6k+3⋮3\notin P\)

+ \(p=3k+2\Rightarrow p^2+2=\left(3k+2\right)^2+2=9k^2+12k+6⋮3\notin P\)

Vậy p = 3

Bài 4:

\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=2\)

\(\Leftrightarrow\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)^2=4\)

\(\Leftrightarrow\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}+\dfrac{2}{ab}+\dfrac{2}{bc}+\dfrac{2}{ac}=4\)

\(\Leftrightarrow\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}+\dfrac{2c}{abc}+\dfrac{2a}{abc}+\dfrac{2b}{abc}=4\)

\(\Leftrightarrow\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}+\dfrac{2\left(a+b+c\right)}{abc}=4\)

\(\Leftrightarrow\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}+2=4\)

\(\Leftrightarrow\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}=2\)

\(\Rightarrowđpcm\)