Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Tam giác ABD có AB = AD ( do ABCD là hình thoi)
=> Tam giác ABD cân tại A. Lại có góc A= 60o
=> Tam giác ABD đều.
Lại có; SA = SB = SD nên hình chóp S.ABD là hình chóp đều.
* Gọi H là tâm của tam giác ABD
=>SH ⊥ (ABD)
*Gọi O là giao điểm của AC và BD.
A B C D S O I J H
a) Hình chóp đều S.ABCD có O là tâm đáy, suy ra \(SO\perp\left(ABCD\right)\Rightarrow CB\perp SO\)
Hình vuông ABCD có I,J lần lượt là trung điểm BC,AD, suy ra \(CB\perp IJ\)
Vậy \(CB\perp\left(SIJ\right)\)hay \(\left(SBC\right)\perp\left(SIJ\right).\)
b) Ta có: \(OC=\frac{CD}{\sqrt{2}}=a;SC=2a\Rightarrow\frac{OC}{SC}=\frac{1}{2}\)
\(\hept{\begin{cases}SO\perp\left(ABCD\right)\\C\in\left(ABCD\right)\end{cases}}\Rightarrow\left(SC,ABCD\right)=\widehat{SCO}=arc\cos\left(\frac{OC}{SC}\right)=60^0\)(Vì \(\widehat{SCO}< 90^0\))
b) Lấy H thuộc SI sao cho JH vuông góc SI
\(\hept{\begin{cases}AD||BC\\BC\subset\left(SBC\right)\end{cases}}\Rightarrow AD||\left(SBC\right)\)
\(\Rightarrow d\left(AD,SB\right)=d\left(AD,SBC\right)=d\left(J,SBC\right)\)
Ta thấy: SI là giao tuyến của (SIJ) và (SBC), mà \(\hept{\begin{cases}J\in\left(SIJ\right)\\JH\perp SI\end{cases}\left(H\in SI\right)}\)nên \(JH\perp\left(SBC\right)\)
Ta có \(SO=a\sqrt{3},OI=a\frac{\sqrt{2}}{2}\Rightarrow\cos\widehat{OSI}=\frac{SO}{\sqrt{SO^2+OI^2}}=\frac{\sqrt{42}}{7}\)
Suy ra \(d\left(J,SBC\right)=JH=IJ.\cos\widehat{HJI}=IJ.\cos\widehat{OSI}=\frac{\sqrt{42}a}{7}\)
Vậy \(d\left(AD,SB\right)=\frac{\sqrt{42}a}{7}.\)
Chữa câu c:
\(d\left(AD,SB\right)=JH=IJ.\cos\widehat{HJI}=a\sqrt{2}.\frac{\sqrt{42}}{7}=\frac{2\sqrt{21}a}{7}\)
1B ; 2D;
3. Trong mp (SBC), từ S kẻ \(SH\perp BC\) (1)
\(\left\{{}\begin{matrix}SA\perp SC\\SA\perp SB\end{matrix}\right.\) \(\Rightarrow SA\perp\left(SBC\right)\Rightarrow SA\perp BC\) (2)
(1); (2) \(\Rightarrow BC\perp\left(SAH\right)\)
Mà BC là giao tuyến của (SBC) và (ABC)
\(\Rightarrow\widehat{SHA}\) là góc giữa (SBC) và (ABC)
\(\frac{1}{SH^2}=\frac{1}{SB^2}+\frac{1}{SC^2}\Rightarrow SH=\frac{SB.SC}{\sqrt{SB^2+SC^2}}=\frac{a\sqrt{6}}{3}\)
\(\Rightarrow tan\widehat{SHA}=\frac{SA}{SH}=\frac{\sqrt{6}}{2}\)
\(\Rightarrow\widehat{SHA}\approx50^046'\)