Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(P\left(x\right)=3x^3-x^2-2x^4+3+2x^3+x+3x^4-x^2-2x^4+3+2x^3+x+3x^4\)
\(=2x^4+7x^3-2x^2+2x+6\)
\(Q\left(x\right)=-x^4+x^2-4x^3-2+2x^2-x-x^3-x^4+x^2-4x^3-2+2x^2-x-x^3\)
\(=-2x^4-10x^3+6x^2-2x-4\)
b) \(P\left(x\right)+Q\left(x\right)=2x^4+7x^3-2x^2+2x+6-2x^4-10x^3+6x^2-2x-4\)
\(=-3x^3+4x^2+2\)
a.
\(P(x)=3x^3-x^2-2x^4+3+2x^3+x+3x^4\)
\(=(-2x^4+3x^4)+(3x^3+2x^3)-x^2+x+3\)
\(=x^4+5x^3-x^2+x+3\)
\(Q(x)=-x^4+x^2-4x^3-2+2x^2-x-x^3\)
\(=-x^4+(-4x^3-x^3)+(x^2+2x^2)-x-2\)
\(=-x^4-5x^3+3x^2-x-2\)
b.
\(P(x)+Q(x)=(x^4+5x^3-x^2+x+3)+(-x^4-5x^3+3x^2-x-2)\)
\(=(x^4-x^4)+(5x^3-5x^3)+(-x^2+3x^2)+(x-x)+(3-2)\)
\(=2x^2+1\)
c.\(H(x)=Q(x)+P(x)\)
\(\Rightarrow H(x)=2x^2+1=0\)
\(\Rightarrow2x^2+1=0\)
\(2x^2\) \(=-1\)
\(x^2\) \(=\frac{-1}{2}\)
mà \(x^2\ge0\)
\(\Rightarrow\)Đa thức \(H(x)=P(x)+Q(x)\)ko có nghiệm
học tốt
Nhớ kết bạn với mình đó
1.a) Theo đề bài,ta có: \(f\left(-1\right)=1\Rightarrow-a+b=1\)
và \(f\left(1\right)=-1\Rightarrow a+b=-1\)
Cộng theo vế suy ra: \(2b=0\Rightarrow b=0\)
Khi đó: \(f\left(-1\right)=1=-a\Rightarrow a=-1\)
Suy ra \(ax+b=-x+b\)
Vậy ...
Sắp xếp A(x)=\(2x^5+x^3+x^2-7x-9\)
B(x)=\(x^4+4x^3+4x^2+5x+11\)
b,M(x)= \(2x^5+x^4+5x^3+5x^2-2x+2\)
N(x)=\(2x^5-x^4-3x^3-3x^2-12x-20\)
c, Thay x=2 vào N(x) ta được
N(2)=0 Vậy 2 là nghiệm của đt N(x)
Thay x=2 vào M(x) ta được
M(2)=.... \(\ne\)0(tự tính nha)
Vậy.............
Vì đa thức g(x) là đa thức bậc 3 và mọi nghiệm của f(x) cũng là của g(x) nên:
G/s \(g\left(x\right)=\left(x-1\right)\left(x+3\right)\left(x-c\right)\) \(\left(c\inℝ\right)\)
Khi đó: \(x^3-ax^2+bx-3=\left(x-1\right)\left(x+3\right)\left(x-c\right)\)
\(\Leftrightarrow x^3-ax^2+bx-3=\left(x^2+2x-3\right)\left(x-c\right)\)
\(\Leftrightarrow x^3-ax^2+bx-3=x^3-\left(c-2\right)x^2-\left(2c+3\right)x+3c\)
Đồng nhất hệ số ta được:
\(\hept{\begin{cases}a=c-2\\b=-2c-3\\c=-1\end{cases}}\Leftrightarrow\hept{\begin{cases}a=-3\\b=-1\\c=-1\end{cases}}\)
Vậy a = -3 , b = -1
a: \(A\left(x\right)=-2x^5+3x^2-4x^5+x^6-2x^2-1\)
\(=x^6+\left(-2x^5-4x^5\right)+\left(3x^2-2x^2\right)-1\)
\(=x^6-6x^5+x^2-1\)
\(=-1+x^2-6x^5+x^6\)
\(B\left(x\right)=-x^6+3-2x-x^2+x^4-2x^6-x^2+4x^2-x^4\)
\(=\left(-x^6-2x^6\right)+\left(x^4-x^4\right)+\left(-x^2-x^2+4x^2\right)-2x+3\)
\(=-3x^6+2x^2-2x+3\)
\(=3-2x+2x^2-3x^6\)
b: \(A\left(x\right)=x^6-6x^5+x^2-1\)
Hệ số cao nhất là 1
Hệ số tự do là -1
Bậc là 6
\(B\left(x\right)=-3x^6+2x^2-2x+3\)
Bậc là 6
Hệ số cao nhất là -3
Hệ số tự do là 3
c: \(A\left(-1\right)=\left(-1\right)^6-6\cdot\left(-1\right)^5+\left(-1\right)^2-1\)
=1+6+1-1
=7
\(A\left(0\right)=0^6-6\cdot0^5+0^2-1=-1\)
\(A\left(1\right)=1^6-6\cdot1^5+1^2-1=1-6+1-1=-5\)
\(A\left(2\right)=2^6-6\cdot2^5+2^2-1=64-192+4-1=68-193=-125\)
d: A(0)=-1
=>x=0 không là nghiệm của A(x)
\(B\left(1\right)=-3\cdot1^6+2\cdot1^2-2\cdot1+3\)
=-3+2-2+3
=0
=>x=1 là nghiệm của B(x)