K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 7 2021

a,Ta có :  \(1-\sqrt{3}\)\(\sqrt{2}-\sqrt{6}=\sqrt{2}\left(1-\sqrt{3}\right)\Rightarrow1-\sqrt{3}< \sqrt{2}\left(1-\sqrt{3}\right)\)

Vậy \(1-\sqrt{3}< \sqrt{2}-\sqrt{6}\)

b, Đặt A =  \(\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}-\sqrt{2}\)(*)

\(\sqrt{2}A=\sqrt{8+2\sqrt{7}}-\sqrt{8-2\sqrt{7}}-2\)

\(=\sqrt{7}+1-\sqrt{7}+1-2=0\Rightarrow A=0\)

Vậy (*) = 0 

1: 

Ta có: \(\sqrt{2}-\sqrt{6}\)

\(=\sqrt{2}\left(1-\sqrt{3}\right)< 0\)

\(\Leftrightarrow1-\sqrt{3}< \sqrt{2}-\sqrt{6}\)

4 tháng 7 2019

iu a ko 

12 tháng 9 2023

a) \(\sqrt{\left(\sqrt{5}-\sqrt{2}\right)^2}+\sqrt{\left(\sqrt{5}+\sqrt{2}\right)^2}\)

\(=\left|\sqrt{5}-\sqrt{2}\right|+\left|\sqrt{5}+\sqrt{2}\right|\)

\(=\sqrt{5}-\sqrt{2}+\sqrt{5}+\sqrt{2}\)

\(=\sqrt{5}+\sqrt{5}\)

\(=2\sqrt{5}\)

b) \(\sqrt{\left(\sqrt{2}-1\right)^2}-\sqrt{\left(\sqrt{2}-5\right)^2}\)

\(=\left|\sqrt{2}-1\right|-\left|\sqrt{2}-5\right|\)

\(=\sqrt{2}-1-\left(5-\sqrt{2}\right)\)

\(=\sqrt{2}-1-5+\sqrt{2}\)

\(=2\sqrt{2}-6\)

28 tháng 7 2018

xem câu đầu ở đây nè https://olm.vn/hoi-dap/question/1248282.html

1: \(sin^6x+cos^6x+3sin^2x\cdot cos^2x\)

\(=\left(sin^2x+cos^2x\right)^2-3\cdot sin^2x\cdot cos^2x\cdot\left(sin^2x+cos^2x\right)+3\cdot sin^2x\cdot cos^2x\)

=1

2: \(sin^4x-cos^4x\)

\(=\left(sin^2x+cos^2x\right)\left(sin^2x-cos^2x\right)\)

\(=1-2\cdot cos^2x\)

 

23 tháng 7 2017

Ta có \(\tan x=\frac{1}{2}\Rightarrow\frac{\sin x}{\cos x}=\frac{1}{2}\Rightarrow\cos x=2\sin x\)

Từ đó \(\frac{\cos x+\sin x}{\cos x-\sin x}=\frac{2\sin x+\sin x}{2\sin x-\sin x}=\frac{3\sin x}{\sin x}=3\)

Vậy \(\frac{\cos x+\sin x}{\cos x-\sin x}=3\)

20 tháng 8 2021

a) Đặt \(sinx+cosx=t\left(\left|t\right|\le\sqrt{2}\right)\Rightarrow sinx.cosx=\frac{t^2-1}{2}\)

=> pt có dạng: \(t=\sqrt{2}\left(t^2-1\right)\Leftrightarrow\sqrt{2}t^2-t-\sqrt{2}=0\)

\(\Leftrightarrow\orbr{\begin{cases}t=\frac{-\sqrt{2}}{2}\\t=\sqrt{2}\end{cases}\Leftrightarrow\orbr{\begin{cases}sinx+cosx=\frac{-\sqrt{2}}{2}\\sinx+cosx=\sqrt{2}\end{cases}}\Leftrightarrow\orbr{\begin{cases}sin\left(x+\frac{\pi}{4}\right)=\frac{-1}{2}\\sin\left(x+\frac{\pi}{4}\right)=1\end{cases}}}\)

\(\Leftrightarrow\hept{\begin{cases}x+\frac{\pi}{4}=\frac{-\pi}{6}+2k\pi\\x+\frac{\pi}{4}=\frac{7\pi}{6}+2k\pi\\x+\frac{\pi}{4}=\frac{\pi}{2}+2k\pi\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{-5\pi}{12}+2k\pi\\x=\frac{11\pi}{12}+2k\pi\\x=\frac{\pi}{4}+2k\pi\end{cases}}\left(k\inℤ\right)}\)