Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tự vẽ hình
Ta có : \(CA . CE = CD . CB\)
\(\Rightarrow\) \(\dfrac{CA}{CD} = \dfrac{CB}{CE}\)
Xét \(\bigtriangleup{CAD} \) và \(\bigtriangleup{CBE}\) , có :
\(\widehat{BCE}\) : chung
\(\widehat{CDA} = \widehat{CBE} = 90 ^0\)
\(\Rightarrow\) \(\bigtriangleup{CAD}\) ~ \(\bigtriangleup{CBE}\) ( g.g)
\(\Rightarrow\) \(\dfrac{CA}{CB} = \dfrac{CD}{ CE}\)
\(\Rightarrow\) \(CA. CE = CB . CD\) (đpcm)
b, Xét \(\bigtriangleup{AQC}\) vuông tại Q , có : \(QE \perp AD\)
Áp dụng hệ thức \(b^2 = a . b'\) , có :
\(\Leftrightarrow\) \(CQ^2 = CA . CE \) (1)
Xét \(\bigtriangleup{CPB}\) vuông tại P , có : \(PD \perp BC\)
Áp dụng hệ thức \(b^2= a . b'\)
\(\Leftrightarrow\) \(CP^2 = CB . CD \) (2)
Vì \(CA . CE = CB . CD \) (cmt) (3)
Từ (1),(2) và (3) \(\Rightarrow\) \(CQ^2 = CP^2\)
\(\Rightarrow\) \(CQ = CP \) (đpcm)
b1. a)
Gỉa sử căn bậc 2 + căn bậc 3 lớn hơn hoặc bằng căn bậc 10
=> ( căn bậc 2 + căn bậc 3 )2 lớn hơn hoặc bằng căn bậc 102
2+ 2 * căn bậc 3 + 3 lớn hơn hoặc bằng 10
5 + 2 căn 6 lớn hơn hoặc bằng 10
2 căn 6 lớn hơn hoặc bằng 5
( 2 căn 6 )2 lớn hơn hoặc bằng 52
4 * 6 lớn hơn 25
24 lớn hơn hoặc bằng 25 (sai)
Vậy căn bậc 2 + căn bậc 3 nhỏ hơn căn bậc 10
a, Xét \(\bigtriangleup{EAB} \) và \(\bigtriangleup{CDE}\) , ta có :
\(\widehat{A} = \widehat{D} = 90^0\)
\(\widehat{AEB} = \widehat{ECD} \)
\(\Rightarrow\) \(\bigtriangleup{EAB} \sim \bigtriangleup{CDE}\) (g.g)
\(\Rightarrow\) \(\dfrac{AB}{DE} = \dfrac{EA}{CD} \)
\(\Rightarrow\) \( \dfrac{AB}{a} = \dfrac{a}{CD} \)
\(\Rightarrow\) \(AB.CD = a^2 \) (đpcm)
b, Xét \(\bigtriangleup{EAB}\) và \(\bigtriangleup{CEB}\) , ta có :
\(\widehat{A} = \widehat{CEB} = 90^0\)
Từ a, ta có : \(\dfrac{EB}{CE} = \dfrac{AB}{DE} = \dfrac{AB}{AE} \)
\(\Rightarrow\) \(\dfrac{EB}{AB} = \dfrac{ CE}{AE}\)
\(\Rightarrow\) \(\bigtriangleup{EAB} \) ~ \(\bigtriangleup{CEB} \)
Bài 1: Tính
a) Ta có: \(\left(\sqrt{3}+2\right)^2\)
\(=\left(\sqrt{3}\right)^2+2\cdot\sqrt{3}\cdot2+2^2\)
\(=3+4\sqrt{3}+4\)
\(=7+4\sqrt{3}\)
b) Ta có: \(-\left(\sqrt{2}-1\right)^2\)
\(=-\left[\left(\sqrt{2}\right)^2-2\cdot\sqrt{2}\cdot1+1^2\right]\)
\(=-\left(2-2\sqrt{2}+1\right)\)
\(=-\left(3-2\sqrt{2}\right)\)
\(=2\sqrt{2}-3\)
Bài 2: Tính
a) Ta có: \(0.5\cdot\sqrt{100}-\sqrt{\frac{25}{4}}\)
\(=\frac{1}{2}\cdot10-\frac{5}{2}\)
\(=5-\frac{5}{2}\)
\(=\frac{5}{2}\)
b) Ta có: \(\left(\sqrt{1\frac{9}{16}}-\sqrt{\frac{9}{16}}\right):5\)
\(=\left(\sqrt{\frac{25}{16}}-\frac{3}{4}\right)\cdot\frac{1}{5}\)
\(=\left(\frac{5}{4}-\frac{3}{4}\right)\cdot\frac{1}{5}\)
\(=\frac{2}{4}\cdot\frac{1}{5}\)
\(=\frac{1}{10}\)
Bài 3: So sánh
a) Ta có: \(3\sqrt{2}=\sqrt{3^2\cdot2}=\sqrt{18}\)
\(2\sqrt{3}=\sqrt{2^2\cdot3}=\sqrt{12}\)
mà \(\sqrt{18}>\sqrt{12}\)(Vì 18>12)
nên \(3\sqrt{2}>2\sqrt{3}\)
\(\Leftrightarrow\sqrt{3\sqrt{2}}>\sqrt{2\sqrt{3}}\)
b) Ta có: \(\left(15-2\sqrt{10}\right)^2\)
\(=225-2\cdot15\cdot2\sqrt{10}+\left(2\sqrt{10}\right)^2\)
\(=225-60\sqrt{10}+40\)
\(=265-60\sqrt{10}\)
\(=135+130-60\sqrt{10}\)
Ta có: \(\left(3\sqrt{15}\right)^2=3^2\cdot\left(\sqrt{15}\right)^2=9\cdot15=135\)
Ta có: \(130-60\sqrt{10}\)
\(=\sqrt{16900}-\sqrt{36000}< 0\)(Vì 16900<36000)
\(\Leftrightarrow130-60\sqrt{10}+135< 135\)(cộng hai vế của BĐT cho 135)
\(\Leftrightarrow\left(15-2\sqrt{10}\right)^2< \left(3\sqrt{15}\right)^2\)
\(\Leftrightarrow15-2\sqrt{10}< 3\sqrt{15}\)
\(\Leftrightarrow\frac{15-2\sqrt{10}}{3}< \frac{3\sqrt{15}}{3}=\sqrt{15}\)
hay \(\frac{15-2\sqrt{10}}{3}< \sqrt{15}\)
a , \(A=\sqrt[3]{1000}-\sqrt[3]{-54}-\sqrt[3]{128}=10+3,77976315-5,0396842=8,74007895\)
b , tương tự
a) \(2\sqrt{2x}-5\sqrt{8x}+7\sqrt{18x}=28\) (*)
đk: x >/ 0
(*) \(\Leftrightarrow2\sqrt{2x}-10\sqrt{2x}+21\sqrt{2x}=28\)
\(\Leftrightarrow13\sqrt{2x}=28\) \(\Leftrightarrow\sqrt{2x}=\dfrac{28}{13}\Leftrightarrow2x=\left(\dfrac{28}{13}\right)^2\Leftrightarrow x=\dfrac{392}{169}\left(N\right)\)
Kl: \(x=\dfrac{392}{169}\)
b) \(\sqrt{4x-20}+\sqrt{x-5}-\dfrac{1}{3}\sqrt{9x-45}=4\) (*)
đk: x >/ 5
(*) \(\Leftrightarrow2\sqrt{x-5}+\sqrt{x-5}-\sqrt{x-5}=4\)
\(\Leftrightarrow2\sqrt{x-5}=4\Leftrightarrow\sqrt{x-5}=2\Leftrightarrow x-5=4\Leftrightarrow x=9\left(N\right)\)
Kl: x=9
c) \(\sqrt{\dfrac{3x-2}{x+1}}=2\) (*)
Đk: \(\left[{}\begin{matrix}x< -1\\x\ge\dfrac{2}{3}\end{matrix}\right.\)
(*) \(\Leftrightarrow\dfrac{3x-2}{x+1}=4\Leftrightarrow3x-2=4x+4\Leftrightarrow x=-6\left(N\right)\)
Kl: x=-6
d) \(\dfrac{\sqrt{5x-4}}{\sqrt{x+2}}=2\) (*)
Đk: \(x\ge\dfrac{4}{5}\)
(*) \(\Leftrightarrow\sqrt{5x-4}=2\sqrt{x+2}\Leftrightarrow5x-4=4x+8\Leftrightarrow x=12\left(N\right)\)
Kl: x=12
1, △ABC△ABC vuông có ˆA=900A^=900 , ˆB=600B^=600 và b = 10 thì độ dài a là :
A. a = 15√3153
B. a = 10√3103
C. a = 20√332033
D. a = 20√3203
2, △ABC△ABC vuông có ˆA=900,ˆC=600A^=900,C^=600 và b = thì độ dài b' là :
A. b' = 8
B. b' = 6
C. b' = 6√363
D. b' = 3√3
1,C
2,B