Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
áp dụng bđt cauchy-shwarz dạng engel
\(\text{ Σ}_{cyc}\frac{a^2}{b+c}\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}\)\(=\frac{a+b+c}{2}\)
Ta có hđt \(\text{ Σ}_{cyc}a^3-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)
Mà a+b+c khác 0 nên a = b = c
\(\Rightarrow N=1\)
![](https://rs.olm.vn/images/avt/0.png?1311)
A B C D O C' A' B' D' d
Đặt độ dài mối cạnh của hình vuông là a (a\(\in\)R+)
Ta thấy:\(\Delta\)AA'O vuông tại A' => ^A'AO + A'OA = 900
Mà ^A'OA + ^B'OB = 900 nên ^A'AO = ^B'OB
Xét \(\Delta\)AA'O và \(\Delta\)OB'B: ^AA'O = ^OB'B = 900; AO=BO; ^A'AO = ^B'OB
=> \(\Delta\)AA'O = \(\Delta\)OB'B (Cạnh huyền góc nhọn) => AA'=OB'
Xét \(\Delta\)BB'O: ^BB'O=900 => OB' 2 + BB' 2 = OB2
Do AA' = OB' => AA' 2 + BB' 2 = OB2 (1)
Tương tự, ta có: CC' 2 + DD' 2 = OC2 (2)
Cộng (1) với (2) => AA' 2 + BB' 2 + CC' 2 + DD' 2 = OB2 +OC2 = a2 (Vì \(\Delta\)BOC vuông cân đỉnh O)
Mà a không đổi nên ta có điều phải chứng minh.