Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a=\dfrac{13}{\sqrt{\left(4+\sqrt{3}\right)^2}}=\dfrac{13}{4+\sqrt{3}}=4-\sqrt{3}\Rightarrow\sqrt{3}=4-a\)
\(\Rightarrow3=16-8a+a^2\Rightarrow a^2-8a+13=0\)
\(A=\dfrac{a^2\left(a^2-8a+13\right)+2a^3-15a^2+18a+23}{a^2-8a+13+2}\)
\(A=\dfrac{2a\left(a^2-8a+13\right)+a^2-8a+13+10}{2}\)
\(A=\dfrac{10}{2}=5\)
\(b,\) Ta có:
\(\dfrac{1}{n\sqrt{n-1}+\left(n-1\right)\sqrt{n}}\\ =\dfrac{1}{\sqrt{n}.\sqrt{n-1}\left(\sqrt{n}+\sqrt{n-1}\right)}\\ =\dfrac{\sqrt{n}}{\sqrt{n}.\sqrt{n-1}}-\dfrac{\sqrt{n-1}}{\sqrt{n}.\sqrt{n-1}}\\ =\dfrac{1}{\sqrt{n-1}}-\dfrac{1}{\sqrt{n}}\)
Thay:
\(n=2\) \(\Leftrightarrow\dfrac{1}{2\sqrt{1}+1\sqrt{2}}=\dfrac{1}{1}-\dfrac{1}{\sqrt{2}}\)
\(n=3\Leftrightarrow\dfrac{1}{3\sqrt{2}+2\sqrt{3}}=\dfrac{1}{\sqrt{2}}-\dfrac{1}{\sqrt{3}}\)
\(...\)
\(n=2007\Leftrightarrow\dfrac{1}{2007\sqrt{2006}+2006\sqrt{2007}}=\dfrac{1}{\sqrt{2006}}-\dfrac{1}{\sqrt{2007}}\\ \)
\(\sqrt{2006+2\sqrt{2005}}-\sqrt{2006-2\sqrt{2005}}\)
\(=\sqrt{\left(\sqrt{2005}+1\right)^2}-\sqrt{\left(\sqrt{2005}-1\right)^2}\)
\(=\left(\sqrt{2005}+1\right)-\left(\sqrt{2005}-1\right)\)
= 2
M = \(\sqrt{4-\sqrt{7}}-\sqrt{4+\sqrt{7}}\)
\(\Rightarrow\sqrt{2}M\)\(=\sqrt{8-2\sqrt{7}}-\sqrt{8+2\sqrt{7}}\)
\(=\sqrt{\left(\sqrt{7}-1\right)^2}-\sqrt{\left(\sqrt{7}+1\right)^2}\)
\(=\left(\sqrt{7}-1\right)-\left(\sqrt{7}+1\right)\)
= - 2
\(\Rightarrow M=-\sqrt{2}\)
\(A=\sqrt{\frac{5}{3}}.\sqrt{\frac{6}{4}}.\sqrt{\frac{7}{5}}...\sqrt{\frac{2008}{2006}}\)
\(A=\sqrt{\frac{5.6.7...2008}{3.4.5...2006}}=\sqrt{\frac{2007.2008}{3.4}}=\sqrt{335838}\)