K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 9 2016

a thuộc  [1;1] là sao bạn? 

NV
19 tháng 2 2019

\(a=\dfrac{13}{\sqrt{\left(4+\sqrt{3}\right)^2}}=\dfrac{13}{4+\sqrt{3}}=4-\sqrt{3}\Rightarrow\sqrt{3}=4-a\)

\(\Rightarrow3=16-8a+a^2\Rightarrow a^2-8a+13=0\)

\(A=\dfrac{a^2\left(a^2-8a+13\right)+2a^3-15a^2+18a+23}{a^2-8a+13+2}\)

\(A=\dfrac{2a\left(a^2-8a+13\right)+a^2-8a+13+10}{2}\)

\(A=\dfrac{10}{2}=5\)

31 tháng 10 2017

đúng rồi

1 tháng 11 2017

 chó điên

13 tháng 8 2017

\(b,\) Ta có:

\(\dfrac{1}{n\sqrt{n-1}+\left(n-1\right)\sqrt{n}}\\ =\dfrac{1}{\sqrt{n}.\sqrt{n-1}\left(\sqrt{n}+\sqrt{n-1}\right)}\\ =\dfrac{\sqrt{n}}{\sqrt{n}.\sqrt{n-1}}-\dfrac{\sqrt{n-1}}{\sqrt{n}.\sqrt{n-1}}\\ =\dfrac{1}{\sqrt{n-1}}-\dfrac{1}{\sqrt{n}}\)

Thay:

\(n=2\) \(\Leftrightarrow\dfrac{1}{2\sqrt{1}+1\sqrt{2}}=\dfrac{1}{1}-\dfrac{1}{\sqrt{2}}\)

\(n=3\Leftrightarrow\dfrac{1}{3\sqrt{2}+2\sqrt{3}}=\dfrac{1}{\sqrt{2}}-\dfrac{1}{\sqrt{3}}\)

\(...\)

\(n=2007\Leftrightarrow\dfrac{1}{2007\sqrt{2006}+2006\sqrt{2007}}=\dfrac{1}{\sqrt{2006}}-\dfrac{1}{\sqrt{2007}}\\ \)

13 tháng 8 2017

Tiếp phần b ( do máy lag) :3

Cộng 2 vế với nhau, ta có:

\(\dfrac{1}{2\sqrt{1}+1\sqrt{2}}+\dfrac{1}{3\sqrt{2}+2\sqrt{3}}+...+\dfrac{1}{2007\sqrt{2006}+2006\sqrt{2007}}\\ =1-\dfrac{1}{\sqrt{2007}}\)

7 tháng 8 2017

\(\sqrt{2006+2\sqrt{2005}}-\sqrt{2006-2\sqrt{2005}}\)

\(=\sqrt{\left(\sqrt{2005}+1\right)^2}-\sqrt{\left(\sqrt{2005}-1\right)^2}\)

\(=\left(\sqrt{2005}+1\right)-\left(\sqrt{2005}-1\right)\)

= 2

M = \(\sqrt{4-\sqrt{7}}-\sqrt{4+\sqrt{7}}\)

\(\Rightarrow\sqrt{2}M\)\(=\sqrt{8-2\sqrt{7}}-\sqrt{8+2\sqrt{7}}\)

\(=\sqrt{\left(\sqrt{7}-1\right)^2}-\sqrt{\left(\sqrt{7}+1\right)^2}\)

\(=\left(\sqrt{7}-1\right)-\left(\sqrt{7}+1\right)\)

= - 2

\(\Rightarrow M=-\sqrt{2}\)

NV
21 tháng 8 2020

\(A=\sqrt{\frac{5}{3}}.\sqrt{\frac{6}{4}}.\sqrt{\frac{7}{5}}...\sqrt{\frac{2008}{2006}}\)

\(A=\sqrt{\frac{5.6.7...2008}{3.4.5...2006}}=\sqrt{\frac{2007.2008}{3.4}}=\sqrt{335838}\)