Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(\dfrac{2}{3}-\dfrac{3}{5}:\left(-1\dfrac{1}{5}\right)+\left(\dfrac{-2}{3}\right)\cdot\dfrac{3}{8}\)
\(=\dfrac{2}{3}-\dfrac{3}{5}\cdot\dfrac{-5}{6}+\left(\dfrac{-1}{4}\right)=\dfrac{5}{12}+\dfrac{1}{2}=\dfrac{11}{12}\)
b)\(17\dfrac{11}{9}-\left(6\dfrac{3}{13}+7\dfrac{11}{19}\right)+\left(10\dfrac{3}{13}-5\dfrac{1}{4}\right)=\dfrac{164}{9}-\left(\dfrac{81}{13}+\dfrac{144}{19}\right)+\left(\dfrac{133}{13}-\dfrac{21}{4}\right)=\dfrac{164}{9}-\dfrac{3411}{247}+\dfrac{259}{52}=\dfrac{6425}{684}\)
c)\(\left(\dfrac{-3}{2}\right)^2-\left[-2\dfrac{1}{3}-\left(\dfrac{3}{4}+\dfrac{1}{3}\right):2\dfrac{3}{5}\right]\cdot\left(\dfrac{-3}{4}\right)=\dfrac{9}{4}-\left[\dfrac{-7}{3}-\dfrac{13}{12}\cdot\dfrac{5}{13}\right]\cdot\left(\dfrac{-3}{4}\right)=\dfrac{9}{4}-\left(\dfrac{-11}{4}\right)\cdot\left(\dfrac{-3}{4}\right)=\dfrac{3}{16}\)
d)\(\dfrac{21}{33}:\dfrac{11}{5}-\dfrac{13}{33}:\dfrac{11}{5}+\dfrac{25}{33}:\dfrac{11}{5}+\dfrac{6}{11}=\dfrac{5}{11}\cdot\left(\dfrac{21}{33}-\dfrac{13}{33}+\dfrac{25}{33}\right)+\dfrac{6}{11}=\dfrac{5}{11}\cdot1+\dfrac{6}{11}=1\)
\(a)\dfrac{2}{3}-\dfrac{3}{5}:\left(-1\dfrac{1}{5}\right)+\left(\dfrac{-2}{3}\right).\dfrac{3}{8}\)
\(=\dfrac{2}{3}-\dfrac{3}{5}:\left(\dfrac{-6}{5}\right)+\left(\dfrac{-2}{3}\right).\dfrac{3}{8}\)
\(=\dfrac{2}{3}-\dfrac{-1}{2}+\left(\dfrac{-2}{3}\right).\dfrac{3}{8}\)
\(=\dfrac{2}{3}-\dfrac{-1}{2}+\dfrac{-1}{4}\)
\(=\dfrac{7}{6}+\dfrac{-1}{4}\)
\(=\dfrac{11}{12}\)
a) (1/7.x-2/7).(-1/5.x-2/5)=0
=> 1/7.x-2/7=0hoặc-1/5.x-2/5=0
*1/7.x-2/7=0
1/7.x=0+2/7
1/7.x=2/7
x=2/7:1/7
x=2
b)1/6.x+1/10.x-4/5.x+1=0
(1/6+1/10-4/5).x+1=0
(1/6+1/10-4/5).x=0-1
(1/6+1/10-4/5).x=-1
(-8/15).x=-1
x=-1:(-8/15) =15/8
a: \(=\left(\dfrac{17}{10}+\dfrac{70}{10}-\dfrac{87}{10}\right):\left(\dfrac{23}{4}-\dfrac{11}{4}+\dfrac{9}{25}\right)\cdot\left(12,98\cdot0,25\right)+12,5\)
\(=0:\left(3+\dfrac{9}{25}\right)\cdot\left(12,98+0,25\right)+12,5\)
=12,5
b: \(=\dfrac{13}{12}\cdot\dfrac{27}{5}\cdot2\cdot\dfrac{34}{9}\cdot2\cdot\dfrac{2}{17}\)
\(=\dfrac{13}{12}\cdot2\cdot\dfrac{27}{5}\cdot\dfrac{34}{9}\cdot\dfrac{4}{17}\)
\(=\dfrac{13}{6}\cdot\dfrac{27}{5}\cdot\dfrac{8}{9}=\dfrac{8}{6}\cdot3\cdot\dfrac{13}{5}=4\cdot\dfrac{13}{5}=\dfrac{52}{5}\)
e) \(\dfrac{-3}{5}.\dfrac{2}{7}+\dfrac{-3}{5}.\dfrac{5}{7}+2\dfrac{3}{5}\)
= \(\dfrac{-3}{5}.\left(\dfrac{2}{7}+\dfrac{5}{7}\right)+\dfrac{13}{5}\)
= \(\dfrac{-3}{5}.1+\dfrac{13}{5}\)
= \(\dfrac{-3}{5}+\dfrac{13}{5}\)
= 2
a)\(\dfrac{2}{3}x-\dfrac{5}{6}=1\dfrac{1}{4}\)
\(\dfrac{2}{3}x-\dfrac{5}{6}=\dfrac{5}{4}\)
\(\dfrac{2}{3}x=\dfrac{5}{4}+\dfrac{5}{6}\)
\(\dfrac{2}{3}x=\dfrac{25}{12}\)
\(x=\dfrac{25}{12}:\dfrac{2}{3}\)
=>\(x=\dfrac{25}{8}\)
a) \(\dfrac{2}{3}x-\dfrac{5}{6}=1\dfrac{1}{4}\) b) \(2\dfrac{1}{3}-\dfrac{4}{5}:x=0,2\)
\(\dfrac{2}{3}x-\dfrac{5}{6}=\dfrac{5}{4}\) \(\dfrac{7}{3}-\dfrac{4}{5}:x=\dfrac{1}{5}\)
\(\dfrac{2}{3}x=\dfrac{5}{4}-\dfrac{5}{6}\) \(\dfrac{4}{5}:x=\dfrac{7}{3}-\dfrac{1}{5}\)
\(\dfrac{2}{3}x=\dfrac{30}{24}-\dfrac{20}{24}\) \(\dfrac{4}{5}:x=\dfrac{35}{15}-\dfrac{3}{15}\)
\(\dfrac{2}{3}x=\dfrac{5}{12}\) \(\dfrac{4}{5}:x=\dfrac{32}{15}\)
\(x=\dfrac{5}{12}:\dfrac{2}{3}\) \(x=\dfrac{4}{5}:\dfrac{32}{15}\)
\(x=\dfrac{5}{12}:\dfrac{8}{12}\) \(x=\dfrac{4}{5}.\dfrac{15}{32}\)
\(x=\dfrac{5}{12}.\dfrac{12}{8}=\dfrac{5}{8}\) \(x=\dfrac{4.15}{5.32}\)
\(x=\dfrac{1.3}{1.8}=\dfrac{3}{8}\)
d)\(\left(\dfrac{4}{3}-\dfrac{1}{4}x\right)^3=\dfrac{-8}{27}\)
\(\left(\dfrac{4}{3}-\dfrac{1}{4}x\right)^3=\left(\dfrac{-2}{3}\right)^3\)
\(\Rightarrow\dfrac{4}{3}-\dfrac{1}{4}x=\dfrac{-2}{3}\)
\(\Rightarrow\dfrac{1}{4}x=\dfrac{4}{3}-\dfrac{-2}{3}\)
\(\Rightarrow\dfrac{1}{4}x=2\)
\(\Rightarrow x=2:\dfrac{1}{4}\)
\(\Rightarrow x=2.4=8\)
a: \(\Leftrightarrow\dfrac{8}{5}+\dfrac{2}{5}\cdot x=\dfrac{16}{5}\)
=>2/5x=8/5
=>x=4
b: \(\Leftrightarrow\left(\dfrac{1}{24}-\dfrac{1}{25}+\dfrac{1}{25}-\dfrac{1}{26}+...+\dfrac{1}{39}-\dfrac{1}{40}\right)\cdot120+\dfrac{1}{3}x=-4\)
\(\Leftrightarrow x\cdot\dfrac{1}{3}+2=-4\)
=>1/3x=-6
=>x=-18
c: =>2|x-1/3|=0,24-4/5=-0,56<0
\(\dfrac{1}{2^2}< \dfrac{1}{1.2}\)
\(\dfrac{1}{3^2}< \dfrac{1}{1.3}\)
\(...\)
\(\dfrac{1}{100^2}>\dfrac{1}{99.100}\)
\(\Rightarrow\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{100^2}< \dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{99.100}\\ \Rightarrow\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{100^2}< \dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}\\ \Rightarrow\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{100^2}< 1-\dfrac{1}{100}=\dfrac{99}{100}\\ \dfrac{99}{100}< \dfrac{1}{4}\\ \Rightarrowđpcm\)
Ta có :
\(A=\dfrac{1}{5^2}+\dfrac{2}{5^3}+\dfrac{3}{5^4}+.............+\dfrac{n}{5^{n+1}}+.....+\dfrac{11}{5^{12}}\)
\(\Rightarrow5A=\dfrac{1}{5}+\dfrac{2}{5^2}+\dfrac{3}{3^3}+........+\dfrac{n}{5^n}+..........+\dfrac{11}{5^{11}}\)
\(\Rightarrow5A-A=\left(\dfrac{1}{5}+\dfrac{2}{5^2}+\dfrac{3}{5^3}+.....+\dfrac{n}{5^n}+....+\dfrac{11}{5^{11}}\right)-\left(\dfrac{1}{5^2}+\dfrac{2}{5^3}+.....+\dfrac{n}{5^{n+1}}+........+\dfrac{11}{5^{12}}\right)\)\(\Rightarrow4A=\dfrac{1}{5}+\dfrac{1}{5^2}+........+\dfrac{1}{5^{11}}-\dfrac{11}{5^{12}}\)
\(\Rightarrow20A=1+\dfrac{1}{5}+.........+\dfrac{1}{5^{10}}-\dfrac{11}{5^{11}}\)
\(\Rightarrow20A-4A=\left(1+\dfrac{1}{5}+.......+\dfrac{1}{5^{10}}-\dfrac{11}{5^{11}}\right)-\left(\dfrac{1}{5}+\dfrac{1}{5^2}+........+\dfrac{1}{5^{11}}-\dfrac{11}{5^{12}}\right)\)\(\Rightarrow16A=1-\dfrac{12}{5^{11}}+\dfrac{11}{5^{12}}< 1\)
\(\Rightarrow A< \dfrac{1}{16}\rightarrowđpcm\)
a) \(\dfrac{1+\dfrac{1}{4}}{1-\dfrac{1}{4}}:\dfrac{1+\dfrac{1}{8}}{1-\dfrac{1}{8}}\\ =\dfrac{\dfrac{5}{4}}{\dfrac{3}{4}}:\dfrac{\dfrac{9}{8}}{\dfrac{7}{8}}\\ =\dfrac{5}{3}:\dfrac{9}{7}\\ =\dfrac{5}{3}.\dfrac{9}{7}\\ =\dfrac{35}{27}=1\dfrac{8}{27}\)
b) \(0,25+37\%-2\dfrac{1}{4}\\ =\dfrac{1}{4}+\dfrac{37}{100}-\dfrac{9}{4}\\ =\dfrac{25+37-225}{100}\\ =-\dfrac{163}{100}=-1\dfrac{63}{100}\)