\(\dfrac{x}{3}=\dfrac{y}{5}\) Tính giá trị A = \(\dfrac{5...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 4 2018

1c)

\(\left(\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+\dfrac{1}{3.4.5}+...+\dfrac{1}{8.9.10}\right)x=\dfrac{22}{45}\)

\(\left(\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+...+\dfrac{1}{8.9}-\dfrac{1}{9.10}\right)x=\dfrac{22}{45}\)

\(\left(\dfrac{1}{1.2}-\dfrac{1}{9.10}\right)x=\dfrac{22}{45}\)

\(\left(\dfrac{1}{2}-\dfrac{1}{90}\right)x=\dfrac{22}{45}\)

\(\dfrac{44}{90}x=\dfrac{22}{45}\)

\(x=\dfrac{22}{45}.\dfrac{90}{44}=1\)

a: \(=\dfrac{1}{2}\cdot xy^5\cdot a^2b^4\cdot-x^3z^7=-\dfrac{1}{2}a^2b^4\cdot x^4y^5z^7\)

b: \(=x^3y\left(-1+\dfrac{1}{2}-\dfrac{3}{4}\right)=-\dfrac{5}{4}x^3y\)

c: \(=4x^2+\dfrac{1}{2}x-7-3x^2-\dfrac{1}{2}x+\dfrac{1}{2}=x^2-\dfrac{13}{2}\)

d: \(=-243x^5y^{10}\cdot\left(-x^3y^6\right)=243x^8y^{16}\)

20 tháng 2 2019

\(A=2x+2y+3xy\left(x+y\right)+5\left(x^3y^2+x^2y^3\right)\)

\(\Rightarrow A=2\left(x+y\right)+3xy\left(x+y\right)+5x^2y^2\left(x+y\right)\)

\(\Rightarrow A=0\) ( do x+y = 0 )

14 tháng 12 2017

ko ai trả lời hẳn một đống cho cậu đâu chi

15 tháng 12 2017

k cần trả lời hết cũng đc

nhưng có trả lời là đc rùi

22 tháng 12 2017

5a.

\(\dfrac{1}{1.3}+\dfrac{1}{3.5}+....+\dfrac{1}{19.21}\\ =\dfrac{1}{2}\left(\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+....+\dfrac{1}{19}-\dfrac{1}{21}\right)\\ =\dfrac{1}{2}\left(1-\dfrac{1}{21}\right)\\ =\dfrac{1}{2}.\dfrac{20}{21}=\dfrac{10}{21}\)

b.

\(\dfrac{1}{1.3}+\dfrac{1}{3.5}+...+\dfrac{1}{\left(2n-1\right)\left(2n+1\right)}\\ =\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+....+\dfrac{1}{2n-1}-\dfrac{1}{2n+1}\right)\\ =\dfrac{1}{2}\left(1-\dfrac{1}{2n+1}\right)< \dfrac{1}{2}.1=\dfrac{1}{2}\)

10 tháng 8 2018

\(xy-3x-y=6\)

\(=>xy+3x-y-3=6-3\)

\(=>x\left(y+3\right)-\left(y+3\right)=3\)

\(=>\left(y+3\right)\left(x-1\right)=3\)

y+3 -1 3 1 -3
x-1 -3 1 3 -1

y+3 -1 3 -3 1
y -4 -1 -7 -3

x-1 -3 1 3 -1
x -2 2 4 0

b: \(ab\cdot bc\cdot ac=\dfrac{1}{2}\cdot\dfrac{2}{3}\cdot\dfrac{3}{4}=\dfrac{1}{4}\)

\(\Leftrightarrow\left(abc\right)^2=\dfrac{1}{4}\)

Trường hợp 1: abc=1/2

\(\Leftrightarrow\left\{{}\begin{matrix}c=\dfrac{1}{2}:\dfrac{1}{2}=1\\a=\dfrac{1}{2}:\dfrac{2}{3}=\dfrac{3}{4}\\b=\dfrac{1}{2}:\dfrac{3}{4}=\dfrac{1}{2}\cdot\dfrac{4}{3}=\dfrac{2}{3}\end{matrix}\right.\)

Trường hợp 2: abc=-1/2

\(\Leftrightarrow\left\{{}\begin{matrix}c=-1\\a=-\dfrac{3}{4}\\b=-\dfrac{2}{3}\end{matrix}\right.\)

c: Theo đề, ta có: \(\left\{{}\begin{matrix}\dfrac{x-1}{2}=\dfrac{y-2}{1}\\\dfrac{y-2}{3}=\dfrac{z-3}{4}\end{matrix}\right.\Leftrightarrow\dfrac{x-1}{6}=\dfrac{y-2}{3}=\dfrac{z-3}{4}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x-1}{6}=\dfrac{y-2}{3}=\dfrac{z-3}{4}=\dfrac{2x+3y-z-2-6+3}{2\cdot6-3\cdot6+3\cdot4}=\dfrac{45}{6}=\dfrac{15}{2}\)

Do đó: x-1=45; y-2=45/2; z-3=30

=>x=46; y=49/2; z=33