\(3^{n+1}+3^n-1\) 

b = \(2.3^{n+1}-3^n+1\) (n th...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 6 2016

Xét tổng : a + b = (    3n+1 + 3n - 1 ) + ( 2.3n+1 - 3n + 1 )

                 a+b = 3 . 3 n+1 = 3n+2 \(⋮̸\) 7 

Nếu cả hai số a , b đều chia hết cho 7 thì a + b \(⋮\) 7 ( mâu thuẫn với kết quả trên )

Do đó trong hai số a , b có ít nhất 1 số không chia hết cho 7

28 tháng 6 2016

cảm ơn bạn nhé

 

7 tháng 1 2020

giúp mình với

thanhks

24 tháng 11 2016

b)

a=3n+1+3n-1=3n(3+1)-1=3n*4-1

Để a chia hết cho 7 thì aEB(7)={1;7;14;28;35;...}

=>{3n*4}E{2;8;15;29;36;...}

=>3nE{9;...} => nE{3;...}

b=2*3n+1-3n+1=3n*(6-1)+1=3n*5+1

Để b chia hết cho 7 thì bEB(7)={1;7;14;28;35;...}

=>{3N*5}E{0;6;13;27;34;...}

=>3NE{0;...}

=>NE{0;...}

=>đpcm(cj ko chắc cách cm này)

2: \(A=9^n\cdot81-9^n+3^n\cdot9+3^n\)

\(=9^n\cdot80+3^n\cdot10\)

\(=10\left(9^n\cdot8+3^n\right)⋮10\)

8 tháng 11 2024

CCó cái chem chép

3 tháng 6 2015

xét n chia cho 3 dư 1 suy ra n=3q+1 (q là thương )

suy ra n^2=(3q+1)^2=(3q)^2+1^2+2.3q.1=9q^2+1+6q

ta có 9q^2+6q chia hết cho 3,mà 1 chia 3 dư 1

từ 2 điều trên suy ra n^2 chia 3 dư 1

xét n chia 3 dư  suy ra n=3p+2 (p là thương)

suy ra n^2=(3p+2)^2=(3p)^2+2^2+2.3p.2=9p^2+4+12p

mà 9p^2+12p chia hết cho 3,mà 4 chia 3 dư 1

từ 2 điều trên suy ra n^2 chia 3 dư 1

vậy với mọi n thuộc N và n ko chia hết cho 3,n^2 luôn chia 3 dư 1

3 tháng 6 2015

có chỗ nào ko hieu bn cứ hỏi mình,tab cho mình nếu đung nha

18 tháng 2 2017

a, Ta có : 8.2n + 1n + 1 

= 8.2n + 1 (vì 1n + 1 lúc nào cũng bằng 1)

= 23 + n . 1

Mà 23 + n luôn luôn ko chia hết cho10

Nên 8.2n + 1n + 1  ko chi hết cho10

5 tháng 3 2017

a) Ta có: \(8\times2^n+2^{n+1}\) \(=8\times2^n+2^n\times2\) \(=2^n\times\left(8+2\right)\) \(=2^n\times10\) \(=...0\)

Vậy \(8\times2^n+2^{n+1}\) có tận cùng bằng chữ số 0 (đpcm).

b) Ta có: \(3^{n+3}-2\times3^n+2^{n+5}-7\times2^n\) \(=3^n\times3^3-2\times3^n+2^n\times2^5-7\times2^n\) \(=3^n\times\left(3^3-2\right)+2^n\times\left(2^5-7\right)\) \(=3^n\times\left(27-2\right)+2^n\times\left(32-7\right)\) \(=3^n\times25+2^n\times25\) \(=\left(3^n+2^n\right)\times25\)

\(25⋮25\)

nên \(\left(3^n+2^n\right)\times25⋮25\)

Vậy \(3^{n+3}-2\times3^n+2^{n+5}-7\times2^n\) chia hết cho 25 (đpcm).