Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(4x^2-25+\left(2x+7\right)\left(5-2x\right)\)
\(=4x^2-25+10x-4x^2+35-14x\)
\(=-4x+10=2\left(-2x+5\right)\)
8x2+30x+7=0
8x2+16x+14x+7=0
8x(x+2) +7(x+2)=0
(8x+7)(x+2)=0
=>\(\orbr{\begin{cases}8x+7=0\\x+2=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-\frac{7}{8}\\x=-2\end{cases}}}\)
\(4x^2-25-\left(2x-5\right)\left(2x+7\right)=0\\ \Leftrightarrow4x^2-25-\left(4x^2+14x-10x-35\right)=0\\ \Leftrightarrow4x^2-25-4x^2-14x+10x+35=0\\
\Leftrightarrow-4x+10=0\)
\(\Leftrightarrow x=\frac{-10}{-4}\\
\Leftrightarrow x=\frac{5}{2}\)
\(x\left(2x-7\right)-4x+14=0\Leftrightarrow\left(x-2\right)\left(2x-7\right)=0\Leftrightarrow\left[{}\begin{matrix}x-2=0\\2x-7=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\frac{7}{2}\end{matrix}\right.\)
\(x^2\left(x-1\right)-4\left(x-1\right)=\left(x^2-4\right)\left(x-1\right)=\left(x-2\right)\left(x+2\right)\left(x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x+2=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2\\x=1\end{matrix}\right.\)
\(x^4-x^3-x^2+x=x\left(x^3+1\right)-x^2\left(x+1\right)=x\left(x+1\right)\left(x^2-x+1-x^2\right)=x\left(x+1\right)\left(1-x\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x+1=0\\1-x\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\pm1\end{matrix}\right.\)
a) \(x\left(2x-7\right)-4x+14-0\Leftrightarrow2x^2-11x+14=0\Leftrightarrow2x^2-4x-7x+14=0\Leftrightarrow2x\left(x-2\right)-7\left(x-2\right)=0\Leftrightarrow\left(2x-7\right)\left(x-2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=3,5\\x=2\end{matrix}\right.\)
b) \(x^2\left(x-1\right)-4x+4=0\Leftrightarrow x^2\left(x-1\right)-4\left(x-1\right)=0\Leftrightarrow\left(x-1\right)\left(x-2\right)\left(x+2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\\x=-2\end{matrix}\right.\)
c) \(x+x^2-x^3-x^4=0\Leftrightarrow x\left(x^3+x^2-x-1\right)=0\Leftrightarrow x\left[x\left(x^2-1\right)+\left(x^2-1\right)\right]=0\Leftrightarrow x\left(x+1\right)\left(x^2-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\\x=-1\end{matrix}\right.\)
d) \(2x^3+3x^2+2x+3=0\Leftrightarrow x^2\left(2x+3\right)+2x+3=0\Leftrightarrow\left(x^2+1\right)\left(2x+3\right)=0\Leftrightarrow x=-1,5\left(x^2+1>0\forall x\right)\)
e) \(4x^2-25-\left(2x-5\right)\left(2x+7\right)=0\Leftrightarrow\left(2x-5\right)\left(2x+5\right)-\left(2x-5\right)\left(2x+7\right)=0\Leftrightarrow\left(2x-5\right)\left(2x+5-2x-7\right)=0\Leftrightarrow2x-5=0\Leftrightarrow x=2,5\)
g) \(x^3+27+\left(x+3\right)\left(x-9\right)=0\Leftrightarrow\left(x+3\right)\left(x^2-3x+9\right)+\left(x+3\right)\left(x-9\right)=0\Leftrightarrow\left(x+3\right)\left(x^2-3x+9+x-9\right)=0\Leftrightarrow x\left(x+3\right)\left(x-2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-3\\x=2\end{matrix}\right.\)
a)(2x-3)2=(x+5)2
=>4x2-12x+9=x2+10x+25
=>3x2-22x-16=0
=>3x2+2x-24x-16=0
=>x(3x+2)-8(3x+2)=0
=>(x-8)(3x+2)=0
=>x=8 hoặc x=-2/3
b)X2.(x-1)-4x2+8x-4=0
=>x2(x-1)-4x2+4x+4x-4=0
=>x2(x-1)-4x(x-1)-4(x-1)=0
=>x2(x-1)-(4x-4)(x-1)=0
=>(x2-4x+4)(x-1)=0
=>(x-2)2(x-1)=0
=>x=2 hoặc x=1
c) 4x2- 25 - (2x- 5) . ( 2x+7)=0
=>4x2-25-(4x2+14x-10x-35)=0
=>4x2-25-4x2-14x+10x+35=0
=>-4x+10=0
=>-4x=-10 <=>x=5/2
d) x3+27+(x+3).(x-9)=0
=>x3+33+(x+3)(x-9)=0
=>(x+3)(x2-3x+9)+(x+3)(x-9)=0
=>(x2-3x+9+x-9)(x+3)=0
=>(x2-2x)(x+3)=0
=>x(x-2)(x+3)=0
=>x=0 hoặc x=2 hoặc x=-3
e) (x-2).(x+5)- x2+4=0
=>(x-2)(x+5)-(x-2)(x+2)=0
=>(x-2)(x+5-x-2)=0
=>3(x-2)=0 <=>x=2
Sau khi khai triển hằng đẳng thức và thực hiện chuyển vế bạn sẽ đk kết quả như này!(\(\left(2x-3\right)^2=\left(x+5\right)^2=3x^2-22x-14\)
1) \(4x^2-25-\left(2x-5\right)\left(2x+7\right)=0\)
\(\Leftrightarrow\left(2x-5\right)\left(2x+5\right)-\left(2x-5\right)\left(2x+7\right)=0\)
\(\Leftrightarrow\left(2x-5\right)\left(2x+5-2x-7\right)=0\)
\(\Leftrightarrow\left(2x-5\right).-2=0\)
\(\Leftrightarrow-4x+10=0\)
\(\Leftrightarrow-4x=-10\)
\(\Leftrightarrow x=\frac{5}{2}.\)
Vậy \(S=\left\{\frac{5}{2}\right\}\)
2)\(x^3+27+\left(x+3\right)\left(x-9\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x^2-3x+9\right)+\left(x+3\right)\left(x-9\right)=0\)
\(\Leftrightarrow\left(x+3\right).\left(x^2-3x+9+x-9\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x^2-2x\right)=0\)
\(\Leftrightarrow\left(x+3\right).x.\left(x-2\right)=0\)
\(\Leftrightarrow x+3=0\)hoặc \(x=0\)hoặc \(x-2=0\)
\(\Leftrightarrow x=-3\)hoặc \(x=0\)hoặc \(x=2\)
Vậy \(S=\left\{-3;0;2\right\}\)
a, \(x\left(x+1\right)-x\left(x-5\right)=6\Leftrightarrow x^2+x-x^2+5x=6\)
\(\Leftrightarrow x=1\)
b, \(4x^2-4x+1=0\Leftrightarrow\left(2x-1\right)^2=0\Leftrightarrow x=\frac{1}{2}\)
c, \(x^2-\frac{1}{4}=0\Leftrightarrow\left(x-\frac{1}{2}\right)\left(x+\frac{1}{2}\right)=0\Leftrightarrow x=\pm\frac{1}{2}\)
d, \(5x^2=20x\Leftrightarrow5x^2-20x=0\Leftrightarrow5x\left(x-4\right)=0\Leftrightarrow x=0;4\)
e, \(4x^2-9-x\left(2x-3\right)=0\Leftrightarrow4x^2-9-2x^2=3x\Leftrightarrow2x^2-9-3x=0\)
\(\Leftrightarrow\left(2x+3\right)\left(x-3\right)=0\Leftrightarrow x=-\frac{3}{2};3\)
f, \(4x^2-25=\left(2x-5\right)\left(2x+7\right)\Leftrightarrow\left(2x-5\right)\left(2x+5\right)-\left(2x-5\right)\left(2x+7\right)=0\)
\(\Leftrightarrow-2\left(2x+5\right)=0\Leftrightarrow x=-\frac{5}{2}\)
a) x( x + 1 ) - x( x - 5 ) = 6
⇔ x2 + x - x2 + 5x = 6
⇔ 6x = 6
⇔ x = 1
b) 4x2 - 4x + 1 = 0
⇔ ( 2x - 1 )2 = 0
⇔ 2x - 1 = 0
⇔ x = 1/2
c) x2 - 1/4 = 0
⇔ ( x - 1/2 )( x + 1/2 ) = 0
⇔ \(\orbr{\begin{cases}x-\frac{1}{2}=0\\x+\frac{1}{2}=0\end{cases}}\Leftrightarrow x=\pm\frac{1}{2}\)
d) 5x2 = 20x
⇔ 5x2 - 20x = 0
⇔ 5x( x - 4 ) = 0
⇔ \(\orbr{\begin{cases}5x=0\\x-4=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=4\end{cases}}\)
e) 4x2 - 9 - x( 2x - 3 ) = 0
⇔ ( 2x - 3 )( 2x + 3 ) - x( 2x - 3 ) = 0
⇔ ( 2x - 3 )( 2x + 3 - x ) = 0
⇔ ( 2x - 3 )( x + 3 ) = 0
⇔ \(\orbr{\begin{cases}2x-3=0\\x+3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{3}{2}\\x=-3\end{cases}}\)
f) 4x2 - 25 = ( 2x - 5 )( 2x + 7 )
⇔ ( 2x - 5 )( 2x + 5 ) - ( 2x - 5 )( 2x + 7 ) = 0
⇔ ( 2x - 5 )( 2x + 5 - 2x - 7 ) = 0
⇔ ( 2x - 5 )(-2) = 0
⇔ 2x - 5 = 0
⇔ x = 5/2
a) \(4x^2-25-\left(2x-5\right)\left(2x+7\right)=0\)
\(\Leftrightarrow\left[\left(2x\right)^2-5^2\right]-\left(2x-5\right)\left(2x+7\right)=0\)
\(\Leftrightarrow\left(2x+5\right)\left(2x-5\right)-\left(2x-5\right)\left(2x+7\right)=0\)
\(\Leftrightarrow\left(2x-5\right)\left(2x+5-2x-7\right)=0\)
\(\Leftrightarrow\left(2x-5\right)\left(-2\right)=0\)
\(\Leftrightarrow10-4x=0\)
\(\Leftrightarrow4x=10\)
\(\Leftrightarrow x=\dfrac{10}{4}=\dfrac{5}{2}=2,5\)
Vậy: \(x=2,5\)
b) \(2x^3+3x^2+2x+3=0\)
\(\Leftrightarrow2x^3+2x+3x^2+3=0\)
\(\Leftrightarrow2x\left(x^2+1\right)+3\left(x^2+1\right)=0\)
\(\Leftrightarrow\left(x^2+1\right)\left(2x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2+1=0\\2x+3=0\end{matrix}\right.\)\(\Leftrightarrow2x=-3\)\(\Leftrightarrow x=-\dfrac{3}{2}\)
Vậy: \(x=-\dfrac{3}{2}\)
_Chúc bạn học tốt_
a) 4x2-25-(2x-5)(2x+7)=0
<=> (4x2-25)-(2x-5)(2x+7)=0
<=> [(2x)2-52]-(2x-5)(2x+7)=0
<=> (2x-5).(2x+5)-(2x-5)(2x+7)=0
<=> (2x-5).[(2x+5)-(2x+7)]=0
<=> (2x-5).(2x+5-2x-7)=0
<=> (2x-5).(-2)=0
=> 2x-5=0
<=> 2x=5
<=> x=5/2
Vậy x=5/2
b) 2x3+3x2+2x+3=0
<=> (2x3+2x)+(3x2+3)=0
<=> 2x(x2+1)+3(x2+1)=0
<=> (x2+1).(2x+3)=0
x2+1=0 x2= -1(vô lí)
<=> <=>
2x+3=0 x= -3/2
Vậy x= -3/2
Ta có đa thức tương đương: 4x2-25+10x-4x2+35-14x
=-4x+10=-2(2x+5)
3(x+ 4) – x2 – 4x
mình gửi nhầm câu bạn giúp mình câu này được không?