\(3x=2y\)và \(\left(x+y\right)^3-\left(x-y\right)^3=126\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 10 2019

1)   \(3x=2y\)và \(\left(x+y\right)^3-\left(x-y\right)^3=126\)

Có: \(3x=2y\)=> \(\frac{x}{2}=\frac{y}{3}=\frac{x-y}{2-3}=\frac{x+y}{2+3}\)

=> \(\frac{x+y}{5}=\frac{x-y}{-1}\)

=> \(\frac{\left(x+y\right)^3}{5^3}=\frac{\left(x-y\right)^3}{\left(-1\right)^3}=\frac{\left(x+y\right)^3-\left(x-y\right)^3}{5^3-\left(-1\right)^3}=\frac{126}{126}=1\)

=> \(\hept{\begin{cases}\frac{\left(x+y\right)^3}{5^3}=1\\\frac{\left(x-y\right)^3}{\left(-1\right)^3}=1\end{cases}\Leftrightarrow}\hept{\begin{cases}x+y=5\\x-y=-1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{5+\left(-1\right)}{2}=2\\y=\frac{5-\left(-1\right)}{2}=3\end{cases}}\)

Vậy:...

2) Áp dụng dãy tỉ số bằng nhau ta có: 

\(\frac{x}{3}=\frac{y}{2}=\frac{z}{-3}=\frac{2x-3y+4z}{2.3-3.2+4.\left(-3\right)}=\frac{48}{-12}=-4\)

=> 

\(\frac{x}{3}=-4\Rightarrow x=-12\)

\(\frac{y}{2}=-4\Rightarrow y=-8\)

\(\frac{z}{-3}=-4\Rightarrow z=12\)

Vậy:...

30 tháng 10 2019

Violympic toán 7

a) Ta có: \(-2xy^2\cdot\left(x^3y-2x^2y^2+5xy^3\right)\)

\(=-2x^4y^3+4x^3y^4-10x^2y^5\)

b) Ta có: \(\left(-2x\right)\cdot\left(x^3-3x^2-x+1\right)\)

\(=-2x^4+6x^3+2x^2-2x\)

c) Ta có: \(3x^2\left(2x^3-x+5\right)\)

\(=6x^5-3x^3+15x^2\)

d) Ta có: \(\left(-10x^3+\frac{2}{5}y-\frac{1}{3}z\right)\cdot\left(-\frac{1}{2}xy\right)\)

\(=5x^4y-\frac{1}{5}xy^2+\frac{1}{6}xyz\)

e) Ta có: \(\left(3x^2y-6xy+9x\right)\cdot\left(-\frac{4}{3}xy\right)\)

\(=-4x^3y^2+8x^2y^2-12x^2y\)

f) Ta có: \(\left(4xy+3y-5x\right)\cdot x^2y\)

\(=4x^3y^2+3x^2y^2-5x^3y\)

Bài 1: Tìm x, y, z thõa mãn các điều kiện sau:\(\frac{5z-6y}{4}=\frac{6x-4z}{5}=\frac{4y-5z}{6}\) và\(3x-2y+5z=96\)Bài 2: Tìm x, y, z thão mãn:a. \(2x=3y=7z\) và  \(x+y+z-13=0\)b. \(\left(x+y\right):\left(5-z\right):\left(y+z\right):\left(7+y\right)=3:1:2:5\)c. \(\frac{x}{y+z-2}=\frac{y}{x+z+1}=\frac{z}{x+y+1}=x+y+z\)d. \(\frac{x-2003}{2}=\frac{y-2004}{6}=\frac{z-2009}{8}\) và \(x+2y-z=4009\)e. \(\frac{x^2}{9}=\frac{y^2}{25}\) và  \(x\cdot...
Đọc tiếp

Bài 1: Tìm x, y, z thõa mãn các điều kiện sau:
\(\frac{5z-6y}{4}=\frac{6x-4z}{5}=\frac{4y-5z}{6}\) và\(3x-2y+5z=96\)

Bài 2: Tìm x, y, z thão mãn:

a. \(2x=3y=7z\) và  \(x+y+z-13=0\)

b. \(\left(x+y\right):\left(5-z\right):\left(y+z\right):\left(7+y\right)=3:1:2:5\)

c. \(\frac{x}{y+z-2}=\frac{y}{x+z+1}=\frac{z}{x+y+1}=x+y+z\)

d. \(\frac{x-2003}{2}=\frac{y-2004}{6}=\frac{z-2009}{8}\) và \(x+2y-z=4009\)

e. \(\frac{x^2}{9}=\frac{y^2}{25}\) và  \(x\cdot y=15\)

f. \(\frac{x^2-y^2}{3}=\frac{y^2+x^2}{-5}=x^{10}\cdot y^{10}=1024\)

g. \(\frac{x^3}{8}=\frac{y^3}{64}=\frac{z^3}{216}\) và \(x^2+y^2+z^2=14\)

h. \(\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{2x+3y-1}{6x}\)

i. \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\) và \(x\cdot y+y\cdot z+x\cdot z=31\)

k. \(7x=3y:5y=7z\)  và \(x\cdot y+x\cdot z-y\cdot z=4\)

 Bìa 3: Tính 

\(Cho \frac{x}{2}=\frac{y}{3}=\frac{z}{5}\)
Tính

\(a. A=\frac{5x+3y}{5y-4z}\)

\(b. B=\frac{x+2y-3z}{3y+2z-5x}\)

\(c. C=\frac{2y-3z}{x+y+z}\)

Bài 4: 

\(Cho \frac{a}{b}=\frac{b}{c}=\frac{c}{a}\) với \(a+b+c\ne0\) và \(a=2011\)
Tính b và 3b-4c

0
24 tháng 7 2017

a) Ta có : \(\frac{x-1}{2}=\frac{y+3}{4}\Leftrightarrow\left(x-1\right).4=\left(y+3\right).2\Leftrightarrow4x-4=2y+6\Leftrightarrow4x-2y=10\Leftrightarrow x=\frac{10+2y}{4}\left(1\right)\)

 \(\frac{y+3}{4}=\frac{z-5}{6}\Leftrightarrow\left(y+3\right).6=\left(z-5\right).4\Leftrightarrow6y+18=4z-20\Leftrightarrow6y-4z=-38\Rightarrow z=\frac{6y+38}{4}\left(2\right)\)Thay (1) và (2) vào biểu thức \(5x-3y-4z=20\); ta được : 

\(\frac{5.\left(10+2y\right)}{4}-3y-\frac{4.\left(6y+38\right)}{4}=20\)

\(\Leftrightarrow50+10y-12y-24y-152=80\)

\(\Leftrightarrow-26y=182\Rightarrow y=-7\)

Với \(y=-7\Rightarrow x=\frac{10+2.-7}{4}=-1;z=\frac{6.-7+38}{4}=-1\)

Vậy .... 

24 tháng 7 2017

mk ko bt 

bạn cute quá ; 

tặng bạn , tk mk nhé ; 

Hình ảnh có liên quan

14 tháng 10 2017

a) Do \(2x=3y=-2z\) nên \(\frac{2x}{1}=\frac{3y}{1}=\frac{4z}{-2}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta được:
\(\frac{2x}{1}=\frac{3y}{1}=\frac{4z}{-2}=\frac{2x-3y+4z}{1-1+\left(-2\right)}=\frac{48}{-2}=-24\)    ( do 2x - 3y + 4z = 48 )
Khi đó: 
\(\frac{2x}{1}=-24\)\(\Rightarrow2x=-24\)\(\Rightarrow x=\frac{-24}{2}=-12\)
\(\frac{3y}{1}=-24\)\(\Rightarrow3y=-24\)\(\Rightarrow y=\frac{-24}{3}=-8\)
\(\frac{4z}{-2}=-24\)\(\Rightarrow-2z=-24\)\(\Rightarrow z=\frac{-24}{-2}=12\)
Vậy x = -12 ; y = -8 ; z = 12

14 tháng 10 2017

Vũ Quang Vinh: tks bạn nhiềuu

30 tháng 4 2019

a)\(-\left(\frac{-1}{2}xy^2z\right)^2\left(4x^2yz^3\right)\)

\(=-\left(\frac{1}{4}x^2y^4z^2\right)\left(4x^2yz^3\right)\)

\(=\left(\frac{-1}{4}.4\right)\left(x^2x^2\right)\left(y^4y\right)\left(z^2z^3\right)\)

\(=-x^4y^5z^5\) \(\Rightarrow\)Bậc là 14 Hệ số là -1

b)\(\left(\frac{-1}{3}x^2yz^3\right).\left(\frac{-6}{7}xyz^2\right)\)

\(=\left(\frac{-1}{3}.\frac{-6}{7}\right)\left(x^2x\right)\left(yy\right)\left(z^3z^2\right)\)

\(=\frac{2}{7}x^3y^2z^5\) \(\Rightarrow\)Bậc là 10 Hệ số là \(\frac{2}{7}\)

c)\(-3x^2.y^4.\left(\frac{-1}{3}y^4z^5x\right).\left(\frac{-1}{2}zyx^3\right)\)

\(=\left(-3.\frac{-1}{3}.\frac{-1}{3}\right)\left(x^2xx^3\right)\left(y^4y^4y\right)\left(z^5z\right)\)

\(=\frac{-1}{3}x^6y^9z^6\) \(\Rightarrow\)Bậc là 21 Hệ số là \(\frac{-1}{3}\)

d)\(\frac{3}{4}xy^3\left(\frac{-2}{3}x^2y^4\right)^2\)

\(=\frac{3}{4}xy^3\left(\frac{4}{9}x^4y^{16}\right)\)

\(=\left(\frac{3}{4}\cdot\frac{4}{9}\right)\left(xx^4\right)\left(y^3y^{16}\right)\)

\(=\frac{1}{3}x^5y^{19}\)

16 tháng 8 2019

a) Ta có \(x:2=y:-5.\)

=> \(\frac{x}{2}=\frac{y}{-5}\)\(x-y=14.\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được:

\(\frac{x}{2}=\frac{y}{-5}=\frac{x-y}{2-\left(-5\right)}=\frac{14}{7}=2.\)

\(\left\{{}\begin{matrix}\frac{x}{2}=2=>x=2.2=4\\\frac{y}{-5}=2=>y=2.\left(-5\right)=-10\end{matrix}\right.\)

Vậy \(\left(x;y\right)=\left(4;-10\right).\)

k) Ta có \(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{15}=\frac{y}{20}.\)

\(\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{y}{20}=\frac{z}{28}.\)

=> \(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\)

=> \(\frac{2x}{30}=\frac{3y}{60}=\frac{z}{28}\)\(2x+3y-z=186.\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được:

\(\frac{2x}{30}=\frac{3y}{60}=\frac{z}{28}=\frac{2x+3y-z}{30+60-28}=\frac{186}{62}=3.\)

\(\left\{{}\begin{matrix}\frac{x}{15}=3=>x=3.15=45\\\frac{y}{20}=3=>y=3.20=60\\\frac{z}{28}=3=>z=3.28=84\end{matrix}\right.\)

Vậy \(\left(x;y;z\right)=\left(45;60;84\right).\)

Mình chỉ làm 2 câu thôi nhé.

Chúc bạn học tốt!

17 tháng 8 2019

Bạn này riết quá, mình cũng đang bận nữa :(

b) \(21x=19y\Leftrightarrow\frac{x}{19}=\frac{y}{21}\)

Áp dụng tính chất dãy tỉ số bằng nhau :

\(\frac{x}{19}=\frac{y}{21}=\frac{x-y}{19-21}=\frac{14}{-2}=-7\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=-38\\y=-42\end{matrix}\right.\)

Vậy...

c) Xem lại đề nhé.

d) \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\Leftrightarrow\frac{x^2}{4}=\frac{y^2}{9}=\frac{z^2}{25}=\frac{x^2+y^2-z^2}{4+9-25}=\frac{-12}{-12}=1\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2=4\\y^2=9\\z^2=25\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\pm2\\y=\pm3\\z=\pm5\end{matrix}\right.\)

Vậy...

e) \(5x=2y\Leftrightarrow\frac{x}{2}=\frac{y}{5}\)(1)

\(3y=5z\Leftrightarrow\frac{y}{5}=\frac{z}{3}\)(2)

Từ (1) và (2) suy ra \(\frac{x}{2}=\frac{y}{5}=\frac{z}{3}=\frac{x+y+z}{2+5+3}=\frac{-720}{10}=-72\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=-144\\y=-360\\z=-216\end{matrix}\right.\)

Vậy...

f) \(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}=\frac{x}{\frac{3}{2}}=\frac{y}{\frac{4}{3}}=\frac{z}{\frac{5}{4}}=\frac{x+y+z}{\frac{3}{2}+\frac{4}{3}+\frac{5}{4}}=12\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=18\\y=16\\z=15\end{matrix}\right.\)

g) Áp dụng TCDTSBN:

\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=\frac{2\left(x-1\right)+3\left(y-2\right)-\left(z-3\right)}{2\cdot2+3\cdot3-4}\)

\(=\frac{2x-2+3y-6-z+3}{9}=\frac{45}{9}=5\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=11\\y=17\\z=23\end{matrix}\right.\)

Vậy...

h) \(\frac{y-z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{y-z+1+x+z+2+x+y-3}{x+y+z}=\frac{2x+2y}{x+y+z}\)

Suy ra \(\frac{2x+2y}{x+y+z}=\frac{1}{x+y+z}\Leftrightarrow2x+2y=1\Leftrightarrow x+y=\frac{1}{2}\)

\(\Leftrightarrow\frac{\frac{1}{2}-3}{z}=\frac{1}{\frac{1}{2}+z}\Leftrightarrow z=\frac{5}{6}\)

Từ đó suy ra : \(\frac{y-z+1}{x}=\frac{x+z+2}{y}=-3\)

Ta có hệ :

\(\left\{{}\begin{matrix}y-z+1=-3x\\x+z+2=-3y\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y-\frac{5}{6}+1=-3x\\x+\frac{5}{6}+2=-3y\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y+\frac{1}{6}=-3x\\x+\frac{17}{6}=-3y\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=-3x-\frac{1}{6}\\x+\frac{17}{6}=-3\left(-3x-\frac{1}{6}\right)\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{7}{24}\\y=\frac{-25}{24}\end{matrix}\right.\)

Vậy...

18 tháng 8 2019

\(a,\left(x-1\right)^{x+2}=\left(x-1\right)^{x+4}\)

\(\Rightarrow\left(x-1\right)^{x+2}\left[1-\left(x-1\right)^2\right]=0\)

\(\Rightarrow\orbr{\begin{cases}\left(x-1\right)^{x+2}=0\\1-\left(x-1\right)^2=0\end{cases}\Rightarrow\orbr{\begin{cases}x=1\\x\left(2-x\right)=0\end{cases}}}\)

=> x=1 ; x=0 ; x=2

Vậy..

18 tháng 8 2019

Bài 1 : 

b) \(\left|x-3\right|=5\)

\(\Rightarrow\orbr{\begin{cases}x-3=-5\\x-3=5\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=-2\\x=8\end{cases}}\)

Vậy x thuộc {-2; 8}

c) \(\left|2x+1\right|=x-8\)

\(\Rightarrow\orbr{\begin{cases}2x+1=-x+8\\2x+1=x-8\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}3x=7\\x=-9\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=\frac{7}{3}\\x=-9\end{cases}}\)

Vậy x thuộc {-9; 7/3}

Câu c) tớ không chắc, thông cảm.

=))