Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
7^1 + 7^2 + ... + 7^2013
= ( 7^1 + 7^2 + 7^3 ) +.... + ( 7^2011 + 7^2012 + 7^2013 )
= 7^1 . ( 1 + 7 + 49 ) + .... + 7^2011( 1+ 7+ 49 )
= 7^1 . 57 + .... + 7^2011 . 57
= 7^1 . 19 . 3 + ... + 7^2011 . 19 .3
=> A chia cho 19 dư 0
Tick nha
Gọi số cần tìm là a (a \(\ne\) 0)
Do a chia 5 dư 1 nên a-1 chia hết cho 5
Mà 10 chia hết cho 5 nên a- 1 + 10 chia hết cho 5
=> a+9 chia hết cho 5 (1)
Do a chia 7 dư 5 nên a-5 chia hết cho 7
Mà 14 chia hết cho 7 nên a- 5 + 14 chia hết cho 7
=> a+9 chia hết cho 7 (2)
Từ (1) và (2) suy ra a+9 là bội của 5 và 7
mà a nhỏ nhất nên a+9 = BCNN (5;7) = 35
=> a = 26
Vậy số phải tìm là 26
mk chỉ làm đc câu a) bài 1 thôi nha !
Bài 1 .
Ta có :
a) A = (2+22)+(23+24)+...+299+2100
=> A = (1+2).21+(1+2).23+...+(1+2).299
=> A = 3.(21+23+...+299) \(⋮\)3
=> A \(⋮\)3
GỌI SỐ TỰ NHIÊN CHIA CHO 7 DƯ 3, CHO 17 DƯ 12, CHO 23 DƯ 7 LÀ a
THEO BÀI RA, TA CÓ: \(a=7q+3=17p+12=23y+7\)( TRONG ĐÓ \(q,p,y\)LÀ THƯƠNG CỦA CÁC PHÉP CHIA)
\(\Rightarrow a+39=7q+42=7\cdot\left(q+6\right)\left(1\right)\)
\(a+39=17p+51=17\cdot\left(p+3\right)\left(2\right)\)
\(a+39=23y+46=23\cdot\left(y+2\right)\left(3\right)\)
TỪ\(\left(1\right),\left(2\right)\&\left(3\right)\Rightarrow a+39\in BC\left(7;17;23\right)\)
TA CÓ: \(7=7;17=17;23=23\)
\(\Rightarrow BCNN\left(7;17;23\right)=7\cdot17\cdot23=2737\)
DO ĐÓ: \(a+39=2737k\left(k\in N\right)\)
\(\Leftrightarrow a=2737k-39\)
\(\Leftrightarrow a=2737\cdot\left(k-1\right)-2698\)
VẬY PHÉP CHIA a CHO 2737 CÓ SỐ DƯ LÀ 2698
Lời giải:
Đặt $A=1-3+3^2-3^3+...-3^{2021}$
Dễ thấy $3,3^2,3^3,...,3^{2021}$ đều chia hết cho $3$
$1$ chia $3$ dư $1$
$\Rightarrow A=1-3+3^2-3^3+...-3^{2021}$ chia $3$ dư $1$.
Lại có:
$A=(1-3+3^2)-(3^3-3^4+3^5)+(3^6-3^7+3^8)-....-(3^{2019}-3^{2020}+3^{2021})$
$=(1-3+3^2)-3^3(1-3+3^2)+3^6(1-3+3^2)-....-3^{2019}(1-3+3^2)$
=(1-3+3^2)(1-3^3+3^6-....-3^{2019})$
$=7(1-3^3+3^6-...-3^{2019})\vdots 7$
Vậy $A$ chia hết cho $7$