Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(1-\frac{1}{3}\right)+\left(1-\frac{1}{15}\right)+...+\left(1-\frac{1}{9999}\right)\)
= \(\left(1-\frac{1}{1.3}\right)+\left(1-\frac{1}{3.5}\right)+...+\left(1-\frac{1}{99.101}\right)\)(50 cặp)
= \(\left(1+1+1+...+1\right)-\left(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{99.101}\right)\)(50 số hạng 1)
= \(1.50-\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{99.101}\right)\)
= \(50-\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{101}\right)\)
= \(50-\frac{1}{2}.\left(1-\frac{1}{101}\right)\)
= \(50-\frac{1}{2}.\frac{100}{101}\)
= \(50-\frac{50}{101}\)
= \(\frac{5000}{101}\)
\(\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+...+\frac{1}{9999}=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{99.101}\)
\(=\frac{1}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}\right)=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\right)\)
\(=\frac{1}{2}\left(1-\frac{1}{101}\right)=\frac{1}{2}.\frac{100}{101}=\frac{50}{101}\)
\(A=\dfrac{-1}{3}+\dfrac{-1}{15}+\dfrac{-1}{35}+...+\dfrac{-1}{9999}\)
\(\Rightarrow-A=\dfrac{1}{3}+\dfrac{1}{15}+\dfrac{1}{35}+...+\dfrac{1}{9999}\)
\(-A=\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{99.101}\)
\(-2A=\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{99.101}\)
\(-2A=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{99}-\dfrac{1}{101}\)
\(-2A=1-\dfrac{1}{101}\)
\(-2A=\dfrac{100}{101}\)
\(-A=\dfrac{100}{101}:2\)
\(-A=\dfrac{50}{101}\)
\(\Rightarrow A=\dfrac{-50}{101}\)
Chúc bạn học tốt!
\(A=\dfrac{-1}{3}+\dfrac{-1}{15}+\dfrac{-1}{35}+...+\dfrac{-1}{9999}\)
\(A=-\left(\dfrac{1}{3}+\dfrac{1}{15}+\dfrac{1}{35}+...+\dfrac{1}{9999}\right)\)
Đặt \(B=\dfrac{1}{3}+\dfrac{1}{15}+\dfrac{1}{35}+....+\dfrac{1}{9999}\)
\(B=\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{99.101}\)
\(2B=\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{99.101}\)
\(2B=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{99}-\dfrac{1}{101}\)
\(2B=1-\dfrac{1}{101}=\dfrac{100}{101}\)
\(B=\dfrac{100}{101}:2=\dfrac{50}{101}\)
\(\Rightarrow A=-B=-\dfrac{50}{101}\)
biến đổi ra là đc
\(1-\left(\frac{2}{3}+\frac{2}{3.5}+\frac{2}{5.7}+..+\frac{2}{99.101}\right)\)
tới đây thôi bạn tự làm đi
\(\dfrac{1}{3}+\dfrac{13}{15}+\dfrac{33}{35}+...+\dfrac{9997}{9999}\)
\(=1-\dfrac{2}{3}+1-\dfrac{2}{15}+1-\dfrac{2}{35}+...+1-\dfrac{2}{9999}\)
\(=\left(1+1+1+...+1\right)-\dfrac{2}{3}+\dfrac{2}{15}+...+\dfrac{2}{9999}\)
\(=50-1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{99}-\dfrac{1}{101}\)
\(=50-\left(1-\dfrac{1}{101}\right)=50-\dfrac{100}{101}\)
\(=\dfrac{4950}{101}\)
\(\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+....+\frac{1}{9999}\)
=\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+....+\frac{1}{99.101}\)
=\(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\)
=\(1-\frac{1}{101}=\frac{100}{101}\)
\(A=\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+\frac{1}{99}+...+\frac{1}{9999}\)
\(A=\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}+...+\frac{1}{99.101}\)
\(A=\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+...+\frac{1}{99}-\frac{1}{101}\right)\)
\(A=\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{101}\right)\)
\(A=\frac{1}{2}.\frac{98}{303}\)
\(A=\frac{49}{303}\)
A= \(\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{99.101}\)
2A=\(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{99.101}\)
2A=\(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{99}-\frac{1}{101}\)
2A=\(\frac{1}{3}-\frac{1}{101}\)
2A=\(\frac{98}{303}\)
A=\(\frac{98}{303}.\frac{1}{2}\)
A=\(\frac{49}{303}\)
Chúc bạn học tốt!
\(\frac{1}{3}+\frac{13}{15}+...+\frac{9997}{9999}\)
\(=1-\frac{2}{3}+1-\frac{2}{15}+...+1-\frac{2}{9999}\)
\(=\left(1+1+...+1\right)-\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{99.101}\right)\)
\(=50-\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{101}\right)\)
\(=50-\left(1-\frac{1}{101}\right)\)
Sau bạn tính tiếp là OK rồi
\(S=1:3+1:15+1:35+...+1:9999\)
\(S=\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+...+\frac{1}{9999}\)
\(S=2\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{99.101}\right)\)
\(2S=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\)
\(2S=1-\frac{1}{101}\)
\(2S=\frac{100}{101}\)
\(S=\frac{100}{101}:2\)
\(S=\frac{50}{101}\)