K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 5 2016

\(S=1:3+1:15+1:35+...+1:9999\)

\(S=\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+...+\frac{1}{9999}\)

\(S=2\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{99.101}\right)\)

\(2S=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\)

\(2S=1-\frac{1}{101}\)

\(2S=\frac{100}{101}\)

\(S=\frac{100}{101}:2\)

\(S=\frac{50}{101}\)

21 tháng 7 2019

\(\left(1-\frac{1}{3}\right)+\left(1-\frac{1}{15}\right)+...+\left(1-\frac{1}{9999}\right)\)

\(\left(1-\frac{1}{1.3}\right)+\left(1-\frac{1}{3.5}\right)+...+\left(1-\frac{1}{99.101}\right)\)(50 cặp)

\(\left(1+1+1+...+1\right)-\left(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{99.101}\right)\)(50 số hạng 1)

\(1.50-\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{99.101}\right)\) 

\(50-\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{101}\right)\)

\(50-\frac{1}{2}.\left(1-\frac{1}{101}\right)\)

\(50-\frac{1}{2}.\frac{100}{101}\)

\(50-\frac{50}{101}\)

\(\frac{5000}{101}\)

10 tháng 6 2020

\(\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+...+\frac{1}{9999}=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{99.101}\)

\(=\frac{1}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}\right)=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\right)\)

\(=\frac{1}{2}\left(1-\frac{1}{101}\right)=\frac{1}{2}.\frac{100}{101}=\frac{50}{101}\)

5 tháng 4 2017

\(A=\dfrac{-1}{3}+\dfrac{-1}{15}+\dfrac{-1}{35}+...+\dfrac{-1}{9999}\)
\(\Rightarrow-A=\dfrac{1}{3}+\dfrac{1}{15}+\dfrac{1}{35}+...+\dfrac{1}{9999}\)
\(-A=\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{99.101}\)

\(-2A=\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{99.101}\)

\(-2A=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{99}-\dfrac{1}{101}\)

\(-2A=1-\dfrac{1}{101}\)

\(-2A=\dfrac{100}{101}\)

\(-A=\dfrac{100}{101}:2\)

\(-A=\dfrac{50}{101}\)

\(\Rightarrow A=\dfrac{-50}{101}\)

Chúc bạn học tốt!

5 tháng 4 2017

\(A=\dfrac{-1}{3}+\dfrac{-1}{15}+\dfrac{-1}{35}+...+\dfrac{-1}{9999}\)

\(A=-\left(\dfrac{1}{3}+\dfrac{1}{15}+\dfrac{1}{35}+...+\dfrac{1}{9999}\right)\)

Đặt \(B=\dfrac{1}{3}+\dfrac{1}{15}+\dfrac{1}{35}+....+\dfrac{1}{9999}\)

\(B=\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{99.101}\)

\(2B=\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{99.101}\)

\(2B=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{99}-\dfrac{1}{101}\)

\(2B=1-\dfrac{1}{101}=\dfrac{100}{101}\)

\(B=\dfrac{100}{101}:2=\dfrac{50}{101}\)

\(\Rightarrow A=-B=-\dfrac{50}{101}\)

cái này tính cái gì thế

ko hiểu

15 tháng 3 2017

1/101

15 tháng 3 2017

biến đổi ra là đc

\(1-\left(\frac{2}{3}+\frac{2}{3.5}+\frac{2}{5.7}+..+\frac{2}{99.101}\right)\)

tới đây thôi bạn tự làm đi

22 tháng 8 2017

\(\dfrac{1}{3}+\dfrac{13}{15}+\dfrac{33}{35}+...+\dfrac{9997}{9999}\)

\(=1-\dfrac{2}{3}+1-\dfrac{2}{15}+1-\dfrac{2}{35}+...+1-\dfrac{2}{9999}\)

\(=\left(1+1+1+...+1\right)-\dfrac{2}{3}+\dfrac{2}{15}+...+\dfrac{2}{9999}\)

\(=50-1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{99}-\dfrac{1}{101}\)

\(=50-\left(1-\dfrac{1}{101}\right)=50-\dfrac{100}{101}\)

\(=\dfrac{4950}{101}\)

27 tháng 6 2017

\(\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+....+\frac{1}{9999}\)

=\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+....+\frac{1}{99.101}\)

=\(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\)

=\(1-\frac{1}{101}=\frac{100}{101}\)

27 tháng 6 2017

tích trước đi đã!!!!!!!!!

22 tháng 5 2016

\(A=\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+\frac{1}{99}+...+\frac{1}{9999}\)

\(A=\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}+...+\frac{1}{99.101}\)

\(A=\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+...+\frac{1}{99}-\frac{1}{101}\right)\)

\(A=\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{101}\right)\)

\(A=\frac{1}{2}.\frac{98}{303}\)

\(A=\frac{49}{303}\)

22 tháng 5 2016

A= \(\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{99.101}\)

2A=\(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{99.101}\)

2A=\(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{99}-\frac{1}{101}\)

2A=\(\frac{1}{3}-\frac{1}{101}\)

2A=\(\frac{98}{303}\)

A=\(\frac{98}{303}.\frac{1}{2}\)

A=\(\frac{49}{303}\)

Chúc bạn học tốt!

24 tháng 6 2018

\(\frac{1}{3}+\frac{13}{15}+...+\frac{9997}{9999}\)

\(=1-\frac{2}{3}+1-\frac{2}{15}+...+1-\frac{2}{9999}\)

\(=\left(1+1+...+1\right)-\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{99.101}\right)\)

\(=50-\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{101}\right)\)

\(=50-\left(1-\frac{1}{101}\right)\)

Sau bạn tính tiếp là OK rồi